

??

�

�

�

�

�

�

�*

�

�

�

�

�

�

�*

6

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

6

H

H

H

H

H

H

HY

�

�

�

�

�

�

��

6

S P

b

� �

�

a

b b

�

a

��

Figure 1: Transition Graphs for S and P

and

P (= (Q j R j R)nf�; �g

Q (= a:�:�:Q

R (= �:b:�:R

written in the language CCS. The �rst is a simple cyclic process which performs the

action a followed by a � action, a b action and �nally another � action to arrive back

at its original start state. Here a and b are some formal uninterpreted actions while �

is a special action which denotes internal unobservable activity. One such activity is an

internal communication or synchronisation between two subprocesses which is modelled

in CCS by the simultaneous occurrence of complementary actions such as a and a .

So in CCS synchronisation is a binary operation between exactly two processes. The

second process above, P , consists of three subprocesses running in parallel, Q and two

copies of R. Q �rst performs the external action a and then synchronises with one of the

copies of R using the action �. That copy now performs the external action b and then

synchronises with Q using the other internal action � while the other copy of R is forced

to idle. The operator nf�; �g indicates that the two actions � and � can only be used

for internal purposes and are not visible to external users. So in this process their only

manifestation is their participation in the � actions. Although these two descriptions

are quite di�erent in nature, semantically they are deemed to be equivalent; according

to the de�nition of bisimulation equivalence S � P . As another example consider

S

0

(= c?x:�:d!bx=2c:�:S

0

and

P

0

(= (Q

0

j R

0

j R

0

j T

0

j T

0

)nfin

1

; in

2

; �g

Q

0

(= c?x:(even(x=

�

�

�

�:

�

�

�

�

�

�3

�

�

�

�

�

�3

�

�

�

��)

B

B

B

B

BM

Q

Q

Qk

B

B

B

B

B

BM

Q

Q

Qs

�

�

�

�

��

�

�

�

�

�

�

�/

S

S

S

So

?

S

S

S

Sw

6

-

�

�

�

�

�

�

�/

�

�

�

�

�

�+

C

C

C

C

C

CW

�

�

�

�

�

�

�

c?0

d!0

d!1

c?1

�

S

0

P

0

c?0d!0

c?1

d!1

�

�

d!1

d!0

�

�

Figure 2: Transition Graphs for S

0

and P

0

c?x while c!e denotes the output of the value of the expression e along c. Communication

is modelled as before with � representing the simultaneous occurrence of complementary

actions; with these interpreted actions input and output along the same channel are

considered to be complementary. So S describes a process which inputs a value on the

channel c, does some internal activity before outputing bx=2c on the channel d, then

engages in internal activity again. The description P

0

is more detailed. This process

consists of �ve process running in parallel. The �rst, Q

0

inputs a value on c and outputs

it immediately on one of the internal channels in

1

or in

2

depending on whether or not it

is even. It then synchronises with the process receiving the output value, which is one of

the copies of either R

0

or T

0

depending on which internal channel is used. The copy of

R

0

outputs the value dx=2e on the channel d and then synchronises with Q

0

while that

of T

0

outputs the value d(x� 1)e=2.

Once more, although these descriptions are quite di�erent, it turns out that S

0

� P

0

because they o�er essentially the same behaviour to their respective environments.

There are a large number of veri�cation tools which have at their core algorithms for

checking bisimulation equivalence between processes, [CPS89, SV89, GLZ89]. By and

large these tools do not work directly on syntactic descriptions such as those above but

rather on more abstract representations of the behaviour of processes. So for example the

operational behaviour of P and S can be represented by the transition graphs in Figure 1

while those for P

0

and S

0

are in Figure 2. These graphs are convenient representations

of the possible transitions which the processes can perform. The two graphs in Figure 1

are �nite and when the standard algorithm is applied to them it returns true. However

the graphs in Figure 2 are in�nite, assuming that the value-space is the set of natural

numbers, and therefore when the algorithm is applied to them it will never terminate,

although they are bisimulation equivalent.

This is a fundamental limitation of the existing algorithms for bisimulation equiva-

lence; because they only apply to �nite transition graphs they are of very limited use

for value-passing languages. The aim of this paper is to develop new more powerful

algorithms which can be applied to a large class of processes which are de�ned in these

value-passing description languages. The idea is to transfer attention from the standard

form of transition graphs to what we call symbolic transition graphs. These are more

abstract descriptions of processes in terms of symbolic actions. For example the symbolic

graphs associated with S

0

and P

0

are given in Figure 3. These are both �nite graphs

where the symbolicactionsothofternal 12=aand

d3
bx=2cand �

example that

c?x:t

c?x

�! t and c!e:t

c!e

�! t

for arbitrary terms. More generally symbolic actions will have boolean guards associated

with them indicating conditions under which they can be performed. Note however that

this form of operational semantics must neccessarily be given for open terms, i.e. terms

which may contain free variables; for example even if c?x:t is a closed term its residual

after the symbolic action c?x, namely t, will in general contain free occurrences of x.

This will complicate to some extent the actual de�nition of the symbolic operational

semantics. Nevertheless we use these formal actions to de�ne two symbolic variants of

bisimulation equivalence, a late and early version. It will be convenient to parametrise

these on boolean expressions. In this case we will have relations of the form '

b

E

and '

b

L

between open terms. For example t '

b

E

u indicates that with respect to the early version

of the symbolic operational semantics t and u are bisimulation equivalent relative to the

boolean expression b. Intuitively this is meant to indicate that in every interpretation

which satis�es the boolean expression b the processes t and u are bisimulation equivalent.

The boolean expressions used to parameterise the equivalences are assumed to be from

from some language for describing boolean propositions. Although we do not give any

syntax for such language it should be noted that these expressions may contain free

variables so that in some interpretations, i.e. assigments of values to variables, a boolean

expression may evaluate to true and in others to false.

If we interpret these terms, by assigning values to the free variables, then we can

also give concrete operational semantics in terms of the concrete actions c?v and c!v and

this in turns leads to a concrete bisimulation equivalence between terms. This level of

semantics corresponds to the standard approach as found for example in [Mil89]. Once

more there is a late and early version and, if we use � to range over assigments of values

to free variables, we obtain relations of the form

� j= t �

E

u and � j= t �

L

u:

Intuitively these mean that with respect to the assigment � t is early/late bisimulation

equivalent to u.

Our �rst major result relates the abstract and concrete versions of these equivalences.

We show that

t '

b

i

u if and only if for every assignment � which satis�es the boolean b

� j= t �

i

u, where i is either E or L.

This result underlies the signi�cance of symbolic bisimulations. For example it shows that

the standard form of bisimulation equivalence between closed terms, �

i

, coincides with

'

true

i

. The crucial di�erence between these two relations is that the former is de�ned on

concrete transition graphs, which for value-passing languages are nearly always in�nite,

while the latter is de�ned on symbolic transition graphs which are frequently �nite.

The second part of the paper is devoted to developing algorithms to decide symbolic

bisimulation equivalences for �nite symbolic transition graphs. For two terms t and u

there may be many booleans b for which t '

b

i

u; for example it turns out that t '

false

u

for all terms t; u. We are interested in calculating the weakest boolean for which t '

b

i

u.

We call thismgb

i

(t; u) which has the property that t '

mgb

i

(t;u)

i

u and whenever t '

b

i

u then

b implies mgb

i

(t; u) . We also wish to generate a symbolic bisimulation which provides a

5

witness to the fact that t '

mgb

i

(t;u)

i

u. Of course even on �nite symbolic transition graphs

these bisimulations are in general in�nite because we must exhibit a suitable relation,

R

b

, for each boolean expression. However we can easily �nd a �nite representation by

using the fact that if b implies b

0

then t '

b

0

i

u implies t '

b

i

u. For both the early

and late case we present algorithms which given a pair t; u returns a boolean expression

logically equivalent to mgb

i

(t; u) and the �nite representation of a witnessing symbolic

bisimulation. The algorithms apply to what we called standard graphs, �nite symbolic

graphs which satisfy some condition on the use of bound variables.

Our algorithms are similar to the bisimulation checking algorithm from [Lar86] in

that both follow closely the de�nition of bisimulations. When given two terms t; u

the algorithm will return a boolean expression equivalent to mgb

i

(t; u). In this sense

we reduce bisimulation equivalence to the logical equivalence of boolean expressions.

Of course if the language for expressions is at all complicated bisimulation equivalence

will be undecidable as indeed will the equivalence between the corresponding boolean

expressions. There is no way of avoiding this problem and our approach at least provides

a systematic way of checking bisimulation equivalence which is parameterised on the

language for boolean and data expressions.

The algorithms we propose are independent of the language used to de�ne expressions

but to be useful we need to be able to

indicate the obvious modi�cation to the substitution �.

We also presume a set of expressions, Exp, ranged over by e, which includes Var and V .

Each e has associated with it a set of free variables, fv(e), and it is assumed that both

evaluations and substitutions behave in a reasonable manner when applied to expressions;

the application of � to e, denoted �(e), yields a value while the application of a substi-

tution, denoted e�, yields another expression with the property that fv(e�) = �(fv(e))

where the latter is de�ned in the obvious manner. It is

a:t

true;�

7�! t � 2 NAct [f c!e j c 2 Chan; e 2 Exp g

c?x:t

true;c?y

7�! t[y=x] where y = new(fv(c?x:t))

t

b

0

;�

7�! t

0

implies (b! t; u)

b^b

0

;�

7�! t

0

u

b

0

;�

7�! u

0

implies (b! t; u)

:b^b

0

;�

7�! u

0

t

b;�

7�! t

0

implies t+ u

b;�

7�! t

0

t

b;�

7�! t

0

implies t j u

b;�

7�! t

0

j u

� 2 NAct [f c!e j c 2 Chan; e 2 Exp g

t

b;c?x

7�! t

0

implies t j u

b;c?y

7�! t

0

[y=x] j u

y =

(

x if x 62 fv(u)

new(fv(t

0

ju)) otherwise

t

b;c?x

7�! t

0

; u

b

0

;c!e

7�! u

0

implies t j u

b^b

0

;�

7�! t

0

[e=x] j u

0

t

b;�

7�! t

0

implies tnc

b;�

7�! t

0

nc

if � does not use the channel c

t[e=x]

b;�

7�! t

0

implies P (e)

b;�

7�! t

0

if P (x)(= t is a declaration

Figure 4: Symbolic Operational Semantics of CCS

This contains the usual combinators from CCS together with a boolean choice mechanism

and it assumes a set of process names, ranged over by P . To give a semantics to the

terms we assume the existence of a set of declarations of the form

P (x)(= t;

one for each process name which occurs in the terms, where it is assumed that the free

variables of t are contained in the list x.

In this language c?x binds occurrences of the variable x in the sub-term t of c?x:t

and we get as usual the set of free variables, fv(u) of a term u. For each � 2 GuAct let

�

7�! be the least relation which satis�es the rules in Figure 4 (the symmetric rules for

+ and j have been omitted). This next-state relation uses a function new, which when

given a set of variables returns a new variable not in that set. Let us assume that the

set of variables, V ar, is totally ordered and that new(V) returns the least variable not

in V . The symbolic transition graph for the language may now be de�ned by letting

the nodes consist of terms t with associated set of free variables fv(t) and t

�

7�! t

0

if

we can derive this statement from the rules in Figure 4. One can easily check that the

requirements of De�nition 2.1 are satis�ed. An example of a symbolic transition graph

generated from the language in this way has already been seen in Figure 3, although the

sets of free variables were not shown. In Figure 5 we give another example of a symbolic

graph assuming the declaration

P (y)(= c?x:x = y ! d!y:P (y); c!(x+ y):P (y);

it is the graph associated with the term P (y), assuming that new(y) = x.

8

-
'

& %

$

resulting terms are also equivalent so long as we update the evaluation so as to take the

substitution into account:

Proposition 3.2 If � j= t �

L

u then � � �

�1

j= t� �

L

u�

A more interesting result is that the equivalence only depends on the free variables of

the terms being compared.

Proposition 3.3 If �(x) = �

0

(x) for every x 2 fv(

H

H

HH

m

b;a

7�! n; a 2 NAct implies m

�

b�;a

�!

L

n

�

m

b;c!e

7�! n implies m

�

b�;c!e�

�!

L

n

�

m

b;c?x

7�! n implies m

�

b�;c?x

�!

L

n

�

Figure 8: Late symbolic operational semantics

We write t '

b

L

u if there is a symbolic late bisimulation S such that (t; u) 2 S

b

. As usual

the standard theory applies because SLB is pointwise monotonic. So f'

b

L

j b 2 BExp g is

the maximal symbolic late bisimulation. We can also show that each '

b

L

is an equivalence

relation, using the same approach as with �

�

L

.

As an example consider the graph in Figure 7 and let A;B;C be the following pairs

of sets:

A = f(p

0

; q

0

); (p

1

; q

1

)g

B = f(p

11

; q

11

); (p

12

; q

12

); (p

111

; q

111

); (p

121

; q

121

)g

C = f(p

11

; q

12

); (p

12

; q

11

); (p

111

; q

122

); (p

121

; q

112

)g

Then the following is a symbolic bisimulation:

S

true

= A [A

�1

S

x=0

= B [B

�1

S

x6=0

= C [C

�1

The remainder of this section is devoted to determining the relationship between

symbolic late bisimulations and concrete late bisimulations. We �rst show the connection

between the symbolic actions and the concrete actions.

Proposition 4.2

1. � j= t

c?x

�! t

0

if and only if t

b;c?x

�!

L

t

0

for some b such that � j= b

b;c?x [.

1. Suppose � j= t

a

�! t

0

where a 2 NAct. Then by Proposition 4.2 it follows that

t

b

1

;a

�!

L

t

0

for some b

1

such that � j= b

1

We �rst check that b

5 The Algorithm

In this section we con�ne our attention to �nite symbolic transition graphs, i.e. graphs

with a �nite number of nodes; they may of course contain in�nite paths representing

in�nite computation sequences. However they are �nite branching and, as remarked

previously, for such graphs it is su�cient to restrict attention to �nite sets of booleans

B in the de�nition of '

L

. The graphs that the algorithm applies takes the form of two

disjoint �nite rooted symbolic transition graphs which satisfy an additional constraint

that we called standard. The roots of these graphs, which we denote by r and r

0

respec-

tively, represent �nite state terms from a language such as CCS. A direct path in such

a graph is a path from a root which contains at most one occurrence of each node, i.e.

no loops are allowed, and a node m is a direct ancestor of n if m occurs on a direct path

from the root to n. A graph is standard if whenever m

c?x

7�! n then x is not in the set of

free variables of any direct ancestor of m.

Here we describe an algorithm which given two terms t; u, calculates a boolean b

such that t '

b

L

u. This is trivial in general since t '

false

L

u for all terms t; u but we are

interested in calculating the most general boolean b such that t '

b

L

u. A boolean is the

most general boolean for a pair of terms t; u, written as mgb

L

(t; u), if t '

mgb

L

(t;u)

L

u and

whenever t '

b

L

u then b! mgb

L

(t; u).

The algorithm for computing late symbolic bisimulation is shown in Figure 9, where

NAct(t; u); Chan(t; u) are the sets of neutral actions and channel names, respectively,

that appear in the next transitions from t; u. It calculates mgb

L

(t; u) and in addition

exhibits a �nite representation, in terms of a table, of a symbolic late bisimulation equiv-

alence which witnesses the fact that t '

mgb(t;u)

L

u. The principle procedure bisim(t; u)

calls close(t; u; true; ;) and this returns two values,M a boolean which will turn out to be

mgb(t; u) and a table T used to construct the witnessing bisimulation. In general a table is

a function T : hT ;T i 7�! 2

BExp

{ it is convenient to use (�nite) sets of boolean expressions

rather than simply boolean expressions. We also need some notation for tables: T v T

0

i� T (t; u) � T

0

(t; u) for all (t; u), T tT

0

is de�ned by (T tT

0

)(t; u) = T (t; u)[T

0

(t; u) for

all (t; u) and we write b�T (t; u) to mean b! b

0

for some b

0

2 T (t; u). The procedure close

has four parameters, t and u, the current terms being compared, b a boolean expression

which represents the constraints accumulated by previous calls to close and inherited

by the current call, and �nally W a set of pairs of nodes which have already been vis-

ited; each pair of nodes will be visited at most once by the algorithm and therefore is

guaranteed to halt. A call to close(t; u; b;W) uses the procedure match to compare each

possible matching move from t and u. Each such comparison returns a boolean and a

table and these are used to construct M and T , the values returned from the call to

close. It is important to note that W is a set of pairs of nodes rather than terms but for

bisim(t; u) = close(t; u; true; ;)

close(t, u, b, W) =

if (t, u) 2 W then (true, ;)

else let (M

, T

) = match(, t, u, b, W)

for 2 f a; c!; c? j a 2 NAct(t; u); c 2 Chan(t; u) g

in (^

M

, t

T

tf(t; u) 7! fb ^ ^

M

gg)

match(a, t, u, b, W) =

let (M

ij

, T

ij

) = close(t

i

, u

j

, b ^ b

i

^ b

0

j

; f(t; u)g [W)

for t

b

i

;a

�!

L

t

i

; u

b

0

j

;a

�!

L

u

j

in (^

i

(b

i

Running the algorithm on it produces:

The reduced LATE characteristic formula is

true

with the bisimulation table:

L_1 R_1: true

L_2 R_2: true

L_3 R_3: v_1=0

L_3 R_4: not(v_1=0)

L_4 R_3: not(v_1=0)

L_4 R__3:R_2:

L_2

graph for CCS we obtain the standard notion of (early) bisimulation equivalence as

de�ned in [Mil89].

Similarly the early symbolic semantics may be obtained by changing the input rule

in Figure 8 to

m

b;c?x

7�! n implies m

�

b�;c?y

�!

E

n

�[x7!y]

provided y 62 fv(m

�

)

(The �!

L

arrows in the other rules are changed to �!

E

as well.)

To de�ne early symbolic bisimulation let S = fS

b

j b 2 BExp g be a parameterised

family of relations over terms. Then SEB(S) is the BExp-indexed family of symmetric

relations de�ned by:

(t; u) 2 SEB(S)

b

if t

b

1

;�

�!

E

t

0

where bv(�) is a fresh variable, then there is a

collection of booleans B such that b ^ b

1

! _B and for each b

0

2 B there

exists a u

b

2

;�

0

�!

E

u

0

such that b

0

! b

2

and

1. if � = c!e then �

0

= c!e

0

, b

0

! e = e

0

and (t

0

; u

0

) 2 S

b

0

2. otherwise � = �

0

and (t

0

; u

0

) 2 S

b

0

It is important to note that the set of booleans B may contain occurrences of the new

variable bv(�).

De�nition 6.2 (Early Symbolic Bisimulations)

S is an early symbolic bisimulation if S � SEB(S) 2

Again adapting the notation already developed we write t '

b

E

u if there is a symbolic

early bisimulation S such that (t; u) 2 S

b

and as usual the standard theory implies that

f'

b

E

j b 2 BExp g is the maximal symbolic early bisimulation and that each '

b

E

is an

equivalence relation.

We now outline the relationship between these two semantic equivalences. First, as

in the late case, early symbolic actions and early concrete actions can be related in a

natural way.

Proposition 6.3

1. � j= t

c?x

�! t

0

if and only if t

b;c?x

�!

E

t

0

for some b such that � j= b

2. � j= t

c!v

�! t

0

if and only if t

b;c!e

�!

E

t

0

for some b and e such that � j= b and �(e) = v

3. � j= t

a

�! t

0

if and only if t

b;a

�!

E

t

0

for some b and � j= b

In analogy with Propositions 4.3 and 4.4, we have the following constructions:

Let S be an arbitrary early symbolic bisimulation. De�ne an Eval-indexed collection of

relations over terms, R

S

, by letting

R

�

S

= f (t; u)

Proposition 6.4

1. If S is an early symbolic bisimulation then R

S

is an early bisimulation.

1.

The algorithm for computing late symbolic bisimulation presented in Figure 9 can

also be modi�ed to calculate early symbolic bisimulation.

L_1 = c?x.IF EVEN(x) THEN R1 ELSE R2+c?x.R3

L_2 = IF EVEN(x) THEN R1 ELSE R2

L_3 = NIL

L_4 = tau.tau.NIL

L_5 = tau.NIL

R_1 = c?x. IF EVEN(x) THEN R1 ELSE R3+c?x.IF EVEN(x) THEN R3 ELSE R2

R_2 = IF EVEN(x) THEN R1 ELSE R3

R_3 = IF EVEN(x) THEN R3 ELSE R2

R_4 = tau.NIL

R_5 = NIL

But the boolean M returned by the late algorithm is

forall v_1,v_2,v_3,v_4.

(EVEN(v_1) or (not(EVEN(v_2)))) and ((not(EVEN(v_3))) or EVEN(v_4)) and

((EVEN(v_1) or (not(EVEN(v_3)))) and ((not(EVEN(v_2))) or EVEN(v_4)))

which is equivalent to false.

7 Conclusion

We have presented a new approach to bisimulation equivalence which works at the sym-

bolic level rather than the more usual level of concrete operational semantics. At this

level of abstraction many value-passing processes have a �nite representation although

semantically they are in some sense in�nite. We have developed algorithms to compute

symbolic bisimulations for a class of �nite symbolic transition graphs called standard.

The algorithms are independent of the language used to de�ne expressions but to be

useful, even for the restricted class of graphs to which they apply, we need to be able to

simplify the returned expressions into some form of minimal form or at least a readable

form. We have implemented the algorithms and a fairly naive set of simpli�cation rules

works reasonably well. They are adequate for simple examples but there is considerable

room for improvement. For example the users help could be requested to simplify ex-

pressions as they are being generated rather than at present when the only simpli�cation

is carried out at the end. We believe that the algorithms may also be easily adapted to

handle other semantic equivalences such as weak bisimulation and testing equivalence.

However one disadvantage of the present situation is that the class of processes to

which or Td
(the)9.7(as)]TJofthforthforat

The standard approach to value-passing in process algebras is to interpret the process

c?x:p as the nondeterministic sum

P

v2V

c?v:p[v=t]. This is the approach suggested in

[Mil89] and pursued, for example, in [Wal89, Bur91]. This results in a calculus with an

in�nite sum operator which may be satisfactory from a theoretical point of view but is

outside the scope of existing veri�cation tools. The only work of which we are aware

which attempts to generalise bisimulation checking to value-passing languages is reported

in [JP92].

Appendices

A Concrete Bisimulations and CCS-Bisimulations

In this appendix we argue that, for the CCS-like language given in Section 2, the concrete

bisimulations de�ned in Section 3 and Section 6 using symbolic transition graphs coincide

with appropriate versions of these equivalences de�ned directly on the syntax of the

language.

We �rst consider the late case.

A late version of the operational semantics for this example language is given in

Figure 10. The relations

a

�! are de�ned over closed terms and the obvious symmetric

rules for + and j have been omitted.

A CCS-late bisimulation is a symmetric relation between closed terms that satis�es:

(p; q) 2 R implies

1. p

c?x

�! �x:p

0

=) there exists q

c?y

�! �y:q

0

such that for all v 2 V; (p

0

[v=x]; q

0

[v=y]) 2

R

2. for any other actions a; p

a

�! p

0

=) there exists q

a

�! q

0

such that (p

0

; q

0

) 2 R

Let � be the maximal CCS-late bisimulation. We will show that it coincides with the

late bisimulation obtained by viewing CCS as a symbolic transition system generated

by rules in Figure 4. For convenience we will denote the term t

;

of the CCS symbolic

transition system simply by t.

The situation is a little complicated by the fact that the symbolic transition system

is de�ned between nodes which are pairs of the form (t; U) with t a CCS term and U a

set of variables. But we can identify a term t with the pair (t; fv(t)). We then have the

theorem

Theorem A.1 p � q i� � j= p �

L

q (i.e. � j= p

;

�

L

q

;

) for every evaluation �.

This follows from two more general results.

Proposition A.2 Let S

�

= f (t

�

; u

�

) j t�� � u�� g. Then fS

�

g is a late bisimulation.

As an immediate corollary we have

Corollary A.3 p � q implies � j= p �

L

q for all �

Proof: The pair p

;

; q

;

are in any S

�

because fv(p) = ; and p�� = p for closed terms

p. 2

Proposition A.4 Let R be the set of all pairs (t��; u��) such that � j= t

�

�

L

u

�

. Then

R is a CCS-late bisimulation.

Corollary A.5 � j= p �

L

q for all � implies p � q

25

a:p

a

�! p a 2 NAct [f c!v j c 2 Chan g

c?x:p

c?x

�! �x:p c 2 Chan

p

� P (e)

b;c?x

7�! t

0

because t[e=x]

b;c?x

7�! t

0

where P (x)(=

t

b;c?x

7�! t

0

for some b with � j= b�.

Now from Lemma A.6

t��

c?y

�! �y:r for some r s.t. for all v; r[v=y] � t

0

[v=x]��

Since t�� � u��, we have

u��

c?z

�! �z:s for some s s.t. for all v; r[v=y] � s[v=z]

Again applying Lemma A.6 we get

u

b

0

;c?w

7�! u

0

for some w

The proof follows the same pattern as before. De�ne

S

�

such that � and �

0

are of the same type, and

(�

0

; �

0

(H3) p : (t; u) �!

�

W

(t

0

; u

0

) and (t

0

; u

0

) 62 W implies p

S

[f(t

0

; u

0

)g � domain(T) and for

every d 2 p

T

B(t

0

; u

0

; b ^ d;W; T)

CLOSE(t; u; b;W;M;T) =

def

H(t; u; b;W; T) and (t; u) 62 W =) T (t; u) = fb ^Mg. 2

De�nition B.2 For each let H

(t; u; b;W;M;T) be true if

(H

1) (r; r

0

) �!

�

W

(t; u)

(H

2) (f(t; u)g [W) \ domain(T) = ;

(H

3) if (t; u)

�;�

0

�! (t

00

; u

00

) is a matching derivation of type , p : (t

00

; u

00

) �!

�

W

(t

0

; u

0

)

and (t

0

; u

0

) 62 W [f(t; u)g then p

S

[f(t

0

; u

0

)g � domain(T) and for every d 2 p

T

B(t

0

; u

0

; b ^M ^ d;W; T)

(H

4) B

(t; u; b ^M; f(t; u)g [W;T)

MATCH

(t; u; b;W;M;T) =

def

H

(t; u; b;W;M;T). 2

There now follow two propositions which show that these veri�cation conditions imply

each other when instantiated to the parameters which correspond to the way in which the

two procedures close and match call each other.

2

Proof of Theorem 5.1:

To show r '

M

L

r

0

, we construct a boolean indexed family of relations S by letting

S

b

= f (t; u) j there exists p : (r; r

0

) �!

�

(t; u); b! d for some d 2 p

T

g

Note that (r; r

0

) 2 S

M

as " : (r; r

0

) �!

�

(r; r

0

) and "

T

= fMg because T (r; r

0

) =

fMg follows from CLOSE(r; r

0

; true; ;;M; T). So if we can prove S is a late symbolic

bisimulation then we are done.

Suppose (t; u) 2 S

b

and t

b

1

;�

�!

L

t

0

. We have to �nd matching derivations from u. We

only consider � = a 2 NAct here. The other cases are similar.

By the de�nition of S there exists p : (r; r

0

) �!

�

(t; u) and b ! d for some d 2 p

T

.

Moreover since H(r; r

0

; true; ;; T) it follows that B(t; u; d; ;; T). Let B

00

be the set of

Now in either case we have b

0

! b

0

j

^ M

ij

. This is true for each b

0

2 B and so

_B ! _

j

(b

0

j

^M

ij

). Since b ^ b

i

= _B it follows that b ! (b

i

! _

j

(b

0

j

^M

ij

)). This

argument holds for every move t

b

i

;a

�!

L

t

0

and therefore b! ^

i

(b

i

! _

j

(b

0

j

^M

ij

)) and by

symmetry we can conclude that b!M

a

. 2

Proof of Thereom 5.2:

An immediate corollary to the above proposition. 2

Acknowledgements: The authors would like to thank Alan Je�rey and Xinxin Liu for

carefully reading a draft of this paper and suggesting many improvements. We would

also like to thank U�e Engberg for his detailed and constructive criticism.

References

[BS90] J. Brad�eld and C. Stirling. Local model checking for in�nite state spaces.

Technical Report ECS-LFCS-90-115, University of Edinburgh, June 1990.

[Bur91] G. Burns. A language for value-passing ccs. Technical Report ECS-LFCS-91-

175, University of Edinburgh, August 1991.

[CPS89] R. Cleaveland, J. Parrow, and B. Ste�en. A semantics based veri�cation tool

for �nite state systems. In Proceedings of the 9

th

International Symposium on

Protocol Speci�cation, Testing and Veri�cation, North Holland, 1989.

[GLZ89] J. Godskesen, K. Larsen, and M. Zeeberg. Tav user manual. Report R89-19,

Aalborg University, 1989.

[JP92] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of

non-�nite-state programs. Information and Computation, 1992. to appear.

Also available as SICS research Report R-89/8908.

[Lar86] K. G. Larsen. Context-Dependent Bisimulation Between Processes. Ph.D.

thesis, Edinburgh University, 1986.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92] R. Milner, J. Parrow, and D. Walker. Mobile logics for mobile processes.

Theoretical Computer Science, 1992. to appear.

[SV89] R. De Simon and D. Vergamimi. Aboard auto. Report RT111, INRIA, 1989.

[Wal89] D. Walker. Automated analysis of mutual exclusion algorithms using CCS.

Formal Aspects of Computing, 1:273{292, 1989.

[Wol86] P. Wolper. Expressing interesting properties of programs in propositional

temporal logic (extended abstract). In Proc. 13th ACM POPL, pages 184{

193, January 1986.

35

