

• preserves barbs, that is preserves some simple observational property of terms.

However, context-based behavioural equalities, such as reduction barbed congruence, suf-
fer from the universal quantification on contexts. This quantification makes very hard to
prove process equalities, and makes mechanical checking impossible. Simpler proof tech-
niques are based on labelled bisimilarities whose definitions do not use context quantifica-
tion. These bisimilarities should imply, or (better) coincide with, reduction barbed congru-
ence [24, 1, 11]. The behaviour of processes is characterised using co-inductive relations
defined over a labelled transition system, or LTS, a collection of relations of the form

P
α

−−→ Q.

Intuitively the action α in the judgement P
α

−−→ Q represents some small context with which
P can interact; if the labelled bisimilarity coincides with the reduction barbed congruence
then this collection of small contexts, codified as actions, is sufficient to capture all possible
interactions that processes can have with arbitrary contexts.

Even if the idea of bisimulation is very general and does not rely on the specific syntax
of the calculus, the definition of an appropriate notion of bisimilarity for Mobile Ambients
revealed to be harder than expected. The reasons of that can be resumed as follows:

• It is difficult for an ambient n to control interferences that may originate either from
other ambients in its environment or from the computation running at n itself, [17].

• Ambient mobility is asynchronous — no permission is required to migrate into an ambi-
ent. As noticed in [28], this may cause a stuttering phenomenon originated by ambients
that may repeatedly enter and exit another ambient. Any successful bisimilarity for
MA should not observe stuttering [28].

• One of the main algebraic laws of MA is the perfect firewall equation, [7]:

(νn)n[P] = 0 for n not in P .

If you suppose P = in k.0, it is evident that a bisimilarity that want to capture this
law must not observe the movements of secret ambients, that is those ambients, like n,
whose names are not known by the rest of the system.

In [18], it is introduced a labelled bisimilarity for an “easier” variant of MA, called SAP,
equipped with (i) synchronous mobility, as in Levi and Sangiorgi’s Safe Ambients [17], and
(ii) passwords to exercise control over, and differentiate between, different ambients which
may wish to exercise a capability. The main result in [18] is the characterisation of reduction
barbed congruence in terms of the labelled bisimilarity. The result holds only in SAP and
heavily relies on the two features (i) and (ii) mentioned above.

This work is the natural continuation of [18] where, now, we tackle the original problem:
to provide bisimulation proof methods for Mobile Ambients.

2

Contribution First of all, as in the Distributed π-calculus [14], we rewrite the syntax of
MA in two levels: processes and systems. This is because we are interested in studying
systems rather than processes. So, our behavioural equalities are defined over systems. This
little expedient allows us (i) to focus on higher-order actions, where movement of code is
involved, and (ii) to model stuttering in terms of standard τ -actions.

We give a new labelled transition system for MA which is used to define a labelled
bisimilarity over systems. The resulting bisimilarity can be defined either in late or in early

Table 1 The Mobile Ambients in Two Levels
Names: a, b, . . . , k, l, m, n, . . . ∈ N

Systems:
M, N ::= 0 termination

∣

∣ M1 | M2 parallel composition
∣

∣ (νn)M restriction
∣

∣ n

Table 2 Structural Congruence and Reduction Rules

P | Q ≡ P | Q (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)
(νn)0 ≡ 0 (Struct Zero Res)
!C.P ≡ C.P | !C.P (Struct Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
n 6∈ fn(P) implies (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)
n 6= m implies (νn)(m[P]) ≡ m[(νn)P] (Struct Res Amb)

≡ is the least equivalence relation which i) satisfies the axioms and rules above and
ii) is preserved by all contexts.

n[in m.P | Q] | m[R] _ m[n[P | Q] | R] (Red In)

m[n[out m.P | Q] | R] _ n[P | Q] | m[R] (Red Out)

open n.P | n[Q] _ P | Q (Red Open)

P ≡ Q Q _ R R ≡ S implies P _ S (Red Struct)

_ is the least equivalence relation which i) satisfies the rules above and
ii) is preserved by all static contexts.

Definition 1.2 (Contexts) A static context is a context where the hole does not appear
under a prefix or a replication. A system context is a context generated by the following

Table 3

Table 4 Labelled Transition System - Pre-actions

(π Pfx)
−

π.P
π

−−→ P
(π Repl Pfx)

−

!π.P
π

−−→ P | !π.P

(π Enter)
P

in n

−−−→ P1

m[P]
enter n

−−−−−→ 〈m[P1]〉0
(π Amb)

−

n[P]
amb n

−−−−→ 〈P 〉0

(π Exit)
P

out n

−−−−→ P1

m[P]
exit n

−−−−−→ 〈m[P1]〉0
(π Res)

P
π

−−→ O n 6∈ fn(π)

(νn)P
π

−−→ (νn)O

(π Par)

P
π

−−→ O

P | Q
π

−−→ O | Q

Q | P
π

−−→ Q | O

by explicitly introducing the environment’s ambient interacting with the process in question.
The content of this ambient will be instantiated later, in the bisimilarity, with a process.
For convenience, we extend the syntax of processes with the special process ◦ to pinpoint
those ambients whose content will be instantiated later. The process ◦ does not reduce: it
is simply a placeholder. Notice that, unlike pre-actions and τ -actions, env-actions do not
have structural rules; this is because env-actions are supposed to be performed by complete
systems that can directly interact with the environment.

We call actions the set of env-actions to which τ has been added. Actions always go
from systems to systems and, in general, from processes to processes, even if the outcome
may possibly involve the special process ◦. As our bisimilarity will be defined over systems,
we will only consider actions (and not pre-actions) in its definition.

Proposition 2.1 If T is a system (resp. a process), and T
α

−−→ T ′ then T ′ is a system
(resp. a process), possibly containing the special process ◦.

Now, we explain the rules induced by the the prefix in, the immigration of ambients. A
typical example of an ambient m migrating into an ambient n is as follows:

(νm)(m[in n.P1 | P2] | M) | n[Q] _ (νm)(M | n[m[P1 | P2] | Q])

The driving force behind the migration is the activation of the prefix in n, within the ambient
m. It induces a capability in the ambient m to migrate into n, which we formalise as a new
action enter n. Thus an application of (π Enter) gives

m[in n.P1 | P2]
enter n

−−−−−−→ 〈m[P1 | P2]〉0

and more generally, using the structural rules (π Res) and (π Par),

(νm)(m[in n.P1 | P2] | M)
enter n

−−−−−−→ (νm)〈m[P1 | P2]〉M.

7

Table 5 Labelled Transition System - τ -actions

(τ Enter)

P

Table 6 Labelled Transition System - Env-actions

(Enter)
P

enter n

−−−−−→ (νm̃)〈k[P1]〉P2
(†)

P
k.enter n

−−−−−−→ (ν ˜

n[m[out n.P1 | P2] | Q]
τ

−−→ n[Q] | m[P1 | P2].

Again, env-actions can model the exiting of both private and global ambients from an
ambient provided by the environment.

Finally, we leave the rules which control the opening as an easy exercise for the reader.
We end this section with a theorem which asserts that the LTS-based semantics coincides

with the reduction semantics of Section 1.

Theorem 2.2

1. If P
τ

−−→ P ′ then P _ P ′

2. If P _ P ′ then P
τ

−−→≡ P ′.

Proof By transition induction. Part 1 is the most difficult. It requires a result describing

the structure of a process P and the outcome O for any pre-action π

3 Characterising Reduction Barbed Congruence

In this section we define a labelled bisimilarity for MA that completely characterises reduction
barbed congruence.

Since we are interested in weak bisimilarities, that abstract over τ -actions, we introduce
the notion of weak action. The definition is standard: =⇒ denotes the reflexive and transitive
closure of

τ

−−→;
α

==⇒ denotes =⇒
α

−−→ =⇒;
α̂

==⇒ denotes =⇒ if α = τ and
α

==⇒ otherwise.
In the previous section we said that actions (and more precisely env-actions) introduce

a special process ◦ to pinpoint those ambients whose content will be instantiated in the
bisimilarity. It should be pointed out that we allow structural congruence to rearrange terms
containing ◦: with respect to structural congruence, ◦ behaves like the inactive process 0.
Before defining the bisimilarity we explain how ◦ is instantiated.

Definition 3.1 Let T , T1, and T2 range over both systems and processes. Then, given a
process P , we define:

0 • P
def
= 0 (T1 | T2) • P

def
= (T1 • P) | (T2 • P)

n[R] • P
def
= n[R • P] (νn)T • P

def
= (νn)(T • P) if n 6∈ fn(P)

◦ • P
def
= P C.R • P

def
= C.(R • P)

!C.R • P
def
= !C.(R • P).

Now, everything is in place to define our bisimilarity.

Definition 3.2 (Late bisimilarity) A symmetric relation R over systems is a late bisim-
ulation if M R N implies:

- if M
α

−−→ M ′, α 6∈ {∗.enter n, ∗.exit n}, then there is a system N ′ such that N
α̂

==⇒
N ′ and for all processes P it holds M ′ • P R N ′ • P ;

- if M
∗.enter n

−−−−−−→ M ′ then there is a system N ′ such that N | n[◦] =⇒ N ′ and for all
processes P it holds M ′ • P R N ′ • P ;

- if M
∗.exit n

−−−−−−→ M ′ then there is a system N ′ such that n[◦ | N] =⇒ N ′ and for all
processes P it holds M ′ • P R N ′ • P .

M and N are late bisimilar, written M ≈ N , if M R N for some late bisimulation R.

The bisimilarity above has a universal quantification over the process P provided by the
environment. This process instantiates the special process ◦ generated via env-actions. The
bisimilarity is defined in a late style as the existential quantification precedes the universal
one. Another possibility would be to define the bisimilarity in early style where the universal
quantification over the environment’s contribution P precedes that over the derivative N ′.
We write ≈e to denote this early variant. By definition, every late bisimulation is also a
early one, while the converse, in general, does not hold. However, in our case, as in HOπ
[25], we will prove that late and early bisimilarity actually coincide. As a consequence, late

11

bisimilarity will be our main labelled bisimilarity because the derivatives N ′ do not depend
on processes P .

Finally, notice that, in the definition of bisimilarity, actions ∗.enter n and ∗.exit n are
treated apart asking for weaker matching requirements. This is because both actions are
not observable. Somehow, this is very similar to what happens with input actions in the
asynchronous π-calculus [15, 3].

3.1 Soundness

Late and early bisimilarity represent two proof techniques for reduction barbed congruence.
More precisely we prove that they are both contextual and contained in reduction barbed
congruence.

The following lemma is crucial for proving that ≈ is contextual. This lemma will be also
used for proving the soundness of the up-to-context proof techniques in Section 4.

Lemma 3.3 Let S be a contextual symmetric relation between systems. Let (M, N) ∈ S be
a pair satisfying the bisimulation conditions in S, that is,

- if M
α

−−→ M ′, α 6∈ {∗.enter n, ∗.exit n}, then there is a system N ′ such that N
α̂

==⇒
N ′ and for all processes P it holds M ′ • P S N ′ • P ;

- if M
∗.enter n

−−−−−−→ M ′ then there is a system N ′ such that N | n[◦] =⇒ N ′ and for all
processes P it holds M ′ • P S N ′ • P ;

- if M
∗.exit n

−−−−−−→ M ′ then there is a system N ′ such that n[◦ | N] =⇒ N ′ and for all
processes P it holds M ′ • P S N ′ • P .

Then, all the pairs (C[M], C[N]), for any system context C[−], also satisfy the bisimulation
conditions in S.

Proof The relation S is contextual, and as such it is the smallest relation between systems
such that:

- if M S N , then M | H S N | H for all systems H;

- if M S N , then (νm)M S (νm)N for all names m;

- if M S N , then m[M | P] S m[N | P] for all names m and processes P .

We prove the closure of C[M] S C[N] under the conditions for being a bisimulation by
induction on the structure of C[−].

• C[−] = −.

This case holds because M S N

– (νm)D[M]
τ

−−→ O1.

This can only be derived from D[M]
τ

−−→ O1, where O1 = (νm)O1. The induction
hypothesis tells us that there exists a system O2 such that D[N] =⇒ O2 and
O1 S O2. We can derive (νm)D[N] =⇒ (νm)O2 and conclude (νm)O1 S (νm)O2

because S is closed under restriction.

– (νm)D[M]
k.enter n

−−−−−−→ O1.

Observe that this must have been derived from

D[M]
enter n

−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)D[M]
enter n

−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)D[M]
k.enter n

−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | k[M1]] | M2)

for some process M1 and system M2. Remark that this implies m 6= n and m 6

(νm)N ′ = O2. We can conclude that for all processes P , it holds O1 • P S O2 • P
up to structural congruence, because S is closed under restriction.

– (νm)D[M]
n.enter k

−−−−−−→ O1.

Observe that this must have been derived from

D[M]
amb n

−−−−→ (ν r̃)〈

– (νm)D[M]
∗.enter n

−−−−−−→ O1.

Observe that there are two possible derivations.

∗ Suppose:

D[M]
enter n

−−−−−→ (ν r̃)〈m[M1]〉M2

(νm)D[M]
enter n

−−−−−→ (νm)(ν r̃)〈m[M1]〉M2

(νm)D[M]
∗.enter n

−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | m[M1]] | M2)

where mm

where m 6∈ r̃, for some process M1 and system M2. Remark that this implies

n 6∈ r. As

– D[M] | H
k.enter n

−−−−−−→ O1.

There are two possible derivations.

∗ Suppose:

D[M]
enter n

−−−−−→ (ν r̃)〈k[M1]〉M2

D[M] | H
enter n

−−−−−→ (ν r̃)〈k[M1]〉M2 | H

D[M] | H
k.enter n

−−−−−−→ O1 ≡ (ν r̃)(n[◦ | k[M1]] | M2 | H)

for some process M1 and system M2. Remark that k 6∈ r̃. As D[M]
enter n

−−−−−→

(ν r̃)〈k[M1]〉M2 then D[M]
k.enter n

−−−−−−→ (ν r̃)(n[◦ | k[M1]] | M2) = M ′.
The induction hypothesis then tells us that there exist systems N ′, A, B such

that D[N] =⇒ A
k.enter n

−−−−−−→ B =⇒ N ′, and for all processes P it holds

M ′ • P S N ′ • P . As A
k.enter n

−−−−−−→ B, the system B

∗ Suppose:

D[M]
exit n

−−−−−→ (ν r̃)〈k[M1]〉M2

D[M] | H
exit n

−−−−−→ (ν r̃)〈k[M1]〉M2 | H

D[M] | H
k.exit n

−−−−−−→ O1 ≡ (ν r̃)(n[◦ | M2 | H] | k[M1])

for some process M1 and system M2. Remark that k 6∈ r̃. As D[M]
exit n

−−−−−→

(ν r̃)〈k[M1]〉M2 then D[M]
k.exit n

−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) = M ′.
The induction hypothesis then tells us that there exist systems N ′, A, B such

that D[N] =⇒ A
k.exit n

−−−−−−→ B =⇒ N ′, and for all processes P it holds
M ′ • P S N ′ • P . Remark that N ′ ≡ (νh̃)n[◦ | N3] | N4, for some N3, N4. As

A
k.exit n

−−−−−−→ B, the system B must be of the form (νs̃)(n[◦ | N2] | k[N1]),

for some process N1 and system N2. It also holds A
exit n

−−−−−→ (νs̃)〈k[N1]〉N2.

This implies A | H
exit n

−−−−−→ (νs̃)〈k[N1]〉N2 | H, from which we can derive

A | H
k.exit n

−−−−−−→ (νs̃)(n[◦ | N2 | H] | k[N1]) ≡ B • (◦ | H). We obtain

D[N] | H =⇒ A | H
k.exit n

−−−−−−→ B • (◦ | H) =⇒≡ N ′ • (◦ | H). Call
N ′ • (◦ | H) = O2. As for all processes P it holds M ′ • P S N ′ • P , we can
conclude that for all processes Q, it holds O1 • Q S O2 • Q up to structural
congruence, because O1 • Q ≡ M ′ • (Q | H) S N ′ • (Q | H) ≡ O2 • Q.

∗ Suppose:

H
exit n

−−−−−→ (ν r̃)〈k[H1]〉H2

D[M] | H
exit n

−−−−−→ (ν r̃)〈k[H1]〉H2 | D[M]

D[M] | H
k.exit n

−−−−−−→ O1 ≡ (ν r̃)(n[◦ | H2 | D[M]] | k[H1])

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct

∗ Suppose:

D[M]
amb n

−−−−→ (ν r̃)〈M1〉M2

D[M] | H
amb n

−−−−→ (ν r̃)〈M1〉M2 | H

D[M] | H
n.enter k

−−−−−−→ O1 ≡ (ν r̃)(n[k[◦] | M1] | M2 | H)

for some process M1 and system M2. Remark that k, n 6∈ r̃. As D[M]
amb n

−−−−→

(ν r̃)〈M1〉M2 then D[M]
n.enter k

−−−−−−→ (ν r̃)(n[k[◦] | M1] | M2) = M ′.
The induction hypothesis then tells us that there exist systems N ′, A, B such

that D[N] =⇒ A
n.enter k

−−−−−−→ B =⇒ N ′, and for all processes P it holds

M ′ • P S N ′ • P . As A
n.enter k

−−−−−−→ B, the system B must be of the form
(νs̃)(n[k[◦] | N1] | N2), for some process N1 and system N2. It also holds

A
amb n

−−−−→ (νs̃)〈N1〉N2. This implies A | H
amb n

−−−−→ (νs̃)〈N1〉N2 | H, from

which we can derive A | H
n.enter k

−−−−−−→ (νs̃)(n[k[◦] | N1] | N2 | H) ≡ B | H.

We obtain D[N] | H =⇒ A | H
n.enter k

−−−−−−→≡ B | H =⇒≡ N ′ | H. Call
N ′ | H = O2. We can conclude that for all processes P , it holds O1•P S O2•P
up to structural congruence, because S is closed under parallel composition.

∗ Suppose:

H
amb n

−−−−→ (ν r̃)〈H1〉H2

D[M] | H
amb n

−−−−→ (ν r̃)〈H1〉H2 | D[M]

D[M] | H
n.enter k

−−−−−−→ O1 ≡ (ν r̃)(n[k[◦] | H1] | H2 | D[M])

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct
the following derivation:

H
amb n

−−−−→ (ν r̃)〈H1〉H2

D[N] | H
amb n

−−−−→ (ν r̃)〈H1〉H2 | D[N]

D[N] | H
n.enter k

−−−−−−→ (ν r̃)(n[k[◦] | H1] | H2 | D[N]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M] S D[N] and S is clo
/R69 7.97011 Tf
..97011 Tf
..933(e)-230. -14.444922.83(045c)0.0j)h

∗ Suppose:

D[M]
amb n

−−−−→ (ν r̃)〈M1〉M2

D[M] | H
amb n

−−−−→ (ν r̃)〈M1〉M2 | H

D[M] | H
k.open n

−−−−−−→ O1 ≡ k[◦ | (ν r̃)(M1 | M2) | H]

for some process M1 and system M2. Remark that k, n 6∈ r̃. As D[M]
amb n

−−−−→

(ν r̃)

∗ Suppose:

D[M]
enter n

−−−−−→ (ν r̃)

n[◦ | D[N]] =⇒ N ′, and for all processes P it holds M ′ • P S N ′ • P .
Remark that N ′ ≡ (νs̃)n[◦ | N3] | N4, for some N3, N4. We can derive
n[◦ D[N] | H] =⇒ (νs̃)n[◦ | N3 | H] | N4. Call (νs̃)n[◦ | N3 | H] | N4 = O2.
As for all processes P it holds M ′ • P S N ′ • P , we can conclude that for all
processes Q, it holds O1 • Q S O2 • Q up to structural congruence, because
O1 • Q ≡ M ′ • (Q | H) S N ′ • (Q | H) ≡ O2 • Q.

∗ Suppose:

H
exit n

−−−−−→ (ν r̃)〈k[H1]〉H2

D[M] | H
exit n

−−−−−→ (ν r̃)〈k[H1]〉H2 | D[M]

D[M] | H
∗.exit n

−−−−−−→ O1 ≡ (ν r̃)(n[◦ | H2 | D[M]] | k[H1])

for some process H1 and system H2. Remark that k ∈ r̃. We can construct
the following derivation:

H
exit n

−−−−−→ (ν r̃)〈k[H1]〉H2

D[N] | H
exit n

−−−−−→ (ν r̃)〈k[H1]〉H2 | D[N]

n[◦ | D[N] | H]
τ

−−→ (ν r̃)(n[◦ | H2 | D[N]] | k[H1]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M] S D[N] and S is closed under parallel
composition and ambient.

Then, we consider the cases when there is interaction between D[M] and H.

– D[M] | H
τ

−−→ O1, because

D[M]
enter n

−−−−−→ (νm̃)〈k[M1]〉M2 and H
amb n

−−−−→ (νh̃)〈H1〉H2.

Then O1 ≡ (νh̃, m̃)(n[k[M1] | H1] | M2 | H2). We distinguish the cases k ∈ m̃,
and k 6∈ m̃.

∗ k 6∈ m̃. As D[M]
enter n

−−−−−→ (νm̃)〈k[M1]〉M2, it also holds D[M]
k.enter n

−−−−−−→
M ′ ≡ (νm̃)(n[◦ | k[M1]] | M2

exists a system N ′ such that D[N] | n[◦] =⇒ N ′ ≡ (νñ)(n[◦ | N1] | N2), and

∗ k ∈ r̃

Theorem 3.4 Late bisimilarity is contextual.

Proof Let S be the smallest binary relation between systems such that:

1. ≈ ⊆ S;

2. if M S N , then C[M] S C[N] for all system contexts C[−].

Remark that S is symmetric because of the symmetry of ≈. We prove that S is a late
bisimilarity up to ≡ by induction on the definition of S.

• M S N because M ≈ N .

Immediate.

• C[M] S C[N] because M S N .

The induction hypothesis assures that (M, N) ∈ S is a pair satisfying the bisimu-
lation conditions in S. Lemma 3.3 assures that the pair (C[M], C[N]) satisfies the
bisimulation conditions in S.

¤

Note that the above proof does not rely on the transitivity of the late bisimulation. Note
also that it is easy to adapt Lemma 3.3 and the above proof to show that early bisimilarity
is contextual.

Proposition 3.5 Late bisimilarity is an equivalence relation.

Proof

Table 7 Contexts for visible actions

α = k.enter n Cα[−] = n[◦ | done[in k.out k.out n]] | −
α = k.exit n Cα[−] = (νa)a[in k.out k.done[out a]] | n[◦ | −]
α = n.enter k Cα[−] = (νa)a[in n.k[out a.(◦ | (νb)b[out k.out n.done[out b]])]] | −
α = k.open n Cα[−] = k[◦ | (νa, b)(open b.open a.done[out k] | a[− | open n.b[out a]])]

where a and b

This implies Ck.enter n[M] • P =⇒∼= M ′ • P | done[].

α = k.exit n Let P be a process. We know that M
k.exit n

−−−−−−→ M ′

Table 8 Auxiliary contexts and processes

−1 ⊕ −2 = (νo)(o[]o

Proof

there exist systems M1 and M2 and a static context C[−] such that:

Cα[M] • SPYα〈i, j, P 〉

= n[SPYα〈i, j, P 〉 | done[in k.out k.out n]] | M

As the name done is fresh for M , by several applications of Lemma 3.11 to the reduction
marked by (⋆) we have:

(νa)a[in k.out k.0] | M1 • SPYα〈i, j, P 〉
=⇒ (νa)E[0 | a[]] • SPYα〈i, j, P 〉.

Again, as a is fresh, by several applications of Lemma 3.11, and reducing underneath
(νa), we obtain:

(νa)(0 | M1) • SPYα〈i, j, P 〉
=⇒ (νa)E[0 | 0] • SPYα〈i, j, P 〉.

Summarising,

M1 • SPYα〈i, j, P 〉 ≡ (νa)(0 | M1) • SPYα〈i, j, P 〉 =⇒ (νa)E[0 | 0] • SPYα〈i, j, P 〉

and, as ≡ is closed under reductions,

M1 =⇒≡ E[0].

So, assuming M ′ = E[0], we can conclude.

α = n.enter k. Observe that

Cα[M] • SPYα〈i, j, P 〉 =
(νa)a[in n.k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]])]] | M

To unleash the ambient done, the ambient a must use its in n capability, and the
ambient

Observe that,

D[(νa)a[k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]]])]]
∼= D[k[SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]]]]

Thus, by examining the above reductions sequence from Cn.enter k[

ambient a. More precisely, there exist a system M1, processes Qi, and a static context
D[−] such that:

Ck.open n[M] • SPYα〈i, j, P 〉

= k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M | open n.b[out a]])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M1 | open n.b[out a]])]
τ

−−→ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q | b[out a]])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q1 | b[out a]])]
τ

−−→ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | b[] | a[Q1])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | b[] | a[Q2])]
τ

−−→ k[SPYα〈i, j, P 〉 | (νa, b)(open a.done[out k] | 0 | a[Q2])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open a.done[out k] | 0 | a[Q3])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(done[out k] | 0 | Q3)]

=⇒ D[done[]] • SPYα〈i, j, P 〉

≡ D[0] • SPYα〈i, j, P 〉 | done[]

= O | done[]

Examining the above reductions sequence from Ck.open n[M]•SPYα〈i, j, P 〉 we conclude
that

M =⇒
k.open n

−−−−−−→ k[◦ | Q].

As
k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q | b[out a]])]
=⇒ D[done[]] • SPYα〈i, j, P 〉

and the name done is fresh, by several applications of Lemma 3.11 we have

k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.0 | a[Q | b[out a]])]
=⇒ D[0] • SPYα〈i, j, P 〉.

By Lemma 3.10, this implies

k[◦ | (νa, b)(open b.open a.0 | a[Q | b[out a]])] =⇒ D[0].

Applying our proof techniques we can easily prove that:

k[◦ | (νa, b)(open

Theorem 3.13 (Completeness)

To conclude we must establish that for all P , it holds M ′ • P ∼= N ′ • P . As barbed
congruence is preserved by restriction, we have (ν

where M ′ • SPY∗.exit n〈i, j, P 〉 ⇓i,J . Call this outcome O1.

This reduction must be matched by a corresponding reduction

C〈P 〉[N] =⇒ O2

where O1
∼= O2 and O2 ⇓A,B. By several applications of Lemma 3.10 it follows that

there is a system N ′ such that O2 = N ′ • SPY∗.enter n〈i, j, P 〉

•

• if M
α

−−→ M ′′, α 6∈ {enter n, exit n}, then there exists a system N ′′ such that

N
α̂

==⇒ N ′′, and for all processes P there is a system context C[−] and systems M ′

and N ′ such that M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′;

• if M
enter n

−−−−−→ M ′′ then there exists a system N ′′ such that N | n[◦] =⇒ N ′′, and
for all processes P there is a system context C[−] and systems M ′ and N ′ such that
M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′;

• if M
exit n

−−−−−→ M ′′ then there exist a system N ′′ such that n[◦ | N] =⇒ N ′′, and
for all processes P there is a system context C[−] and systems M ′ and N ′ such that
M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′.

Theorem 4.7 If R is a bisimulation up to context and up to &, then R ⊆ ≈.

Proof We define the relation S as the smallest relation such that:

1. M R N implies M S N ;

2. M & A, A S B, B . N implies M S N ;

3. M S N implies C[M] S C[N], for all system contexts C[−].

We prove by induction on its definition, that S is a late bisimulation. This will assure the
soundness of the relation R, because M R N implies M S N which implies M ≈ N

• M S N because M & A, A S B, B . N .

The induction hypothesis tells us that A S B behaves like a late bisimulation.

Suppose M
α

−−→ M ′, with α 6∈ {∗.enter n, ∗.exit n}. A simple diagram chasing
allows us to conclude that there are systems A′, B′, N ′ such that for all process P
it holds M ′ • P & A′ • P S B′ • P . N ′ • P , and in turn, by construction of S,
M ′ • P S N ′ • P .

Suppose M
∗.enter n

−−−−−−→ M ′. As M & A, for all process P , it holds M ′ • P & A | n[P].
As A S B, the closure properties of S assure that A | n[P] S B | n[P]. The expansion
relation is a congruence, and since B S N we conclude that B | n[P] . N | n[P]. But
N | n[P] =⇒ N | n[P], and M ′ • P &S. (N | n[◦]) • P . This, by construction of S,
implies M ′ • P S (N | n[◦]) • P .

Suppose M
∗.exit n

−−−−−−→ M ′. As M & A, for all process P , it holds M ′ • P & n[P | A].
As A S B, the closure properties of S assure that n[P | A] S n[P | B]. The expansion
relation is a congruence, and since B S N we conclude that n[P | A] . n[P | N]. But
n[P | B] =⇒ n[P | N], and M ′ • P &S. n[◦ | N] • P . This, by construction of S,
implies M ′ • P S n[◦ | N] • P .

• C[M] S C[N] because M S N and C[−] is a system context.

The induction hypothesis tells us that (M, N) ∈ S is a pair satisfying the bisimulation
conditions in S. Lemma 3.3 assures that the pair (C[M], C[N]) ∈ S satisfies the
bisimulation conditions in S.

¤

5 Adding Communication

The basic idea is to have an output process such as 〈E〉.P , which outputs the message E
and then continues as P , and an input process (x)Q which on receiving a message binds it
to x in Q which then executes; here occurrences of x in Q are bound. Notice that we have
synchronous output; as discussed in [33, 28, 4] this is not unreal

Table 9 The Message-passing Mobile Ambients in Two Levels

Names: a, b, . . . , k, l, m, n, . . . ∈ N

Capabilities:
C ::= in n may enter into n

∣

∣ out n may exit out of n
∣

∣ open n may open n

Expressions:
E, F ::= x variable

∣

∣ C capability
∣

∣ E.F path
∣

∣ ε empty path

Guards:
G ::= E expression

∣

∣ (x) input
∣

∣ 〈E〉 output

Systems:
M, N ::= 0 termination

∣

∣ M1 | M2 parallel composition
∣

∣ (νn)M restriction
∣

∣ n[P] ambient

Processes:
P, Q, R ::= 0 nil process

∣

∣ P1 | P2 parallel composition
∣

∣ (νn)P restriction
∣

∣ G.P prefixing
∣

∣ n[P] ambient
∣

∣ !G.P replication

Structural and Reduction rules for Communication:
E.(F.P) ≡ (E.F).P (Struct Path)
ε.P _ P (Red Empty Path)
(x).P | 〈M〉.Q _ P{M/x} | Q (Red Comm)

Table 10 Pre-actions and Concretions for Communication
Pre-actions: π ::= . . . Concretions: K ::= (νm̃)〈P 〉Q

∣

∣ (E)
∣

∣ 〈−〉
∣

∣ (νm̃)〈E〉Q

40

Table 11 Labelled Transition System - Communication

(π Output)
−

〈E〉.P
〈−〉

−−−→ 〈E〉P
(π Input)

−

(x).P
(E)

−−−→ P{E/x}

(π Path)
E.(F.P)

π

−−→ Q

(E.F).P
π

−−→ Q
(τ Eps)

−

ǫ.P
τ

−−→ P

(τ Comm) P
〈−〉

−−−→ (νm̃)〈E〉P ′ Q
(E)

−−−→ Q′ fn(Q′) ∩ {m̃} = ∅

P | Q
τ

−−→ (νm̃)(P ′ | Q′)

instantiated by a system context, because in a system context the hole cannot appear under
a prefix. This in turn implies that our bisimulations can be applied to the extended calculus,
and all the results of Section 3 and Section 4 hold without modifications.

Theorem 5.1 Late bisimilarity, early bisimilarity, and barbed congruence coincide in the
Message Passing Calculus.

Theorem 5.2 The up-to expansion, up-to context, and up-to context and expansion proof
techniques are sound proof techniques in the Message Passing Calculus.

6 Algebraic Theory

In this section we prove a a collection of algebraic propertie

7. (νn)n[m[out n.P] |
∏

j∈J open kj.Rj] ∼= (νn)(m[P] | n[
∏

j∈J open kj.Rj]) if m 6=
kj, for j ∈ J

8. n[(νm)(open m.P | m[N]) | Q] ∼= n[(νm)(P | N) | Q] if Q ≡ M |
∏

j∈J〈Wj〉.Rj

and

Lemma 6.2 Let P , Q, and R be processes. Then

1. (νk, m, w)(k[in m.P] | m[open k.Q] | w[open m.R])
∼= (νk, m, w)(m[k[P] | open k.Q] | w[open m.R])

2. (νm, w)(m[〈in w〉 | (x).P] | w[open m.Q]) ∼= (νm, w)(m[P{in w/x}] | w[open m.Q])

Proof

• Our env-actions, unlike those in [18], are truly late, as they do not mention the pro-
cess provided by the environment. This process can be added late, when playing the
bisimulation game.

• Our actions for ambient’s movement, unlike those in SAP, report the name of the
migrating ambient. For instance, in k.enter n we say that ambient k enters n. The
knowledge of k is necessary to make the action observable for the environment. This

[7] L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000. An extended abstract appeared in Proc. of FoSSaCS ’98.

[8] G. Castagna and F. Zappa Nardelli. The seal calculus revisited: Contextual equivalence
and bisimilarity. In Proc. 22nd FSTTCS ’02, volume 2556 of LNCS. Springer-Verlag,
2002.

[9] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer
Science, 34:83–133, 1984.

[10] G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph
synchronization with mobility. In Proc. ICTCS, volume 2202 of LNCS, 2001.

[11] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In
Proc. 25th ICALP, pages 844–855, 1998.

[12] J.C. Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile resources. In
Proc. 10th CONCUR ’02, volume 2421 of LNCS, 2002.

[13] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. Journal of
Mathematical Structures in Computer Science, 12:1–38, 2002.

[14] M. Hennessy and J. Riely. A typed language for distributed mobile processes. In Proc.
25th POPL. ACM Press, 1998.

[23] D.M. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,
Conf. on Theoretical Computer Science, volume 104 of LNCS. Springer Verlag, 1981.

[24] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, Department of Computer Science, University of
Edinburgh, 1992.

[25] D. Sangiorgi. Bisimulation for Higher-Order Process Calculi. Information and Compu-
tation, 131(2):141–178, 1996.

[26] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile processes.
Theoretical Computer Science, 155:39–83, 1996.

[27] D. Sangiorgi. On the bisimulation proof method. Journal of Mathematical Structures
in Computer Science, 8:447–479, 1998.

[28] D. Sangiorgi. Extensionality and intensionality of the ambient logic. In Proc. 28th
POPL. ACM Press, 2001.

[29] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proc.
CONCUR ’92, volume 630 of LNCS, pages 32–46. Springer Verlag, 1992.

