
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Semantics for core Concurrent ML

using computation types

Alan Jeffrey

Report 3/96 May 1996

Computer Science

School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

2 Alan Jeffrey

The resulting labelled transition system can be used as the basis of an equational

theory of CML expressions, using bisimulation as equivalence.

Unfortunately, there are some problems with this semantics:

� It is complex, due to having to allow expressions in any evaluation context

to reduce (for example requiring three rules for if-expressions rather than

Reppy’s two axiom schemas).

� It produces very long reductions, due to large numbers of ‘book-keeping’

steps (for example the long reduction in Table 9).

� The resulting equational theory does not have pleasant mathematical proper-

ties (for example neither β- nor η-conversion hold for the language).

In this paper we present a variant of CML using computation types. These pro-

vide an explicit type constructor comp for computation, which means that the

type system can distinguish between expressions which can perform computa-

tion (those of type Acomp) and those which are guaranteed to be in normal

form (anything else). Differentiating by type between expressions which can

and cannot perform reductions makes the operational semantics much simpler,

for example the much shorter reduction in Table 16 and the simpler operational

rules for if-expressions:

if truethen f elseg

τ

�! f if false then f elseg

τ

�! g

Computation types were originally proposed by Moggi (1991) in a denotational

setting to provide models of non-trivial computation (such as CML commu-

nication) without losing pleasant mathematical properties (such as β- and η-

reduction). Moggi provided a translation from the call-by-value λ-calculus into

the language with computation types, which we can adapt for CML and prove to

be correct up to weak bisimulation.

We can also use equational reasoning to transform inefficient programs (such

as the translation of the long reduction in Table 9) into efficient ones (such as the

short reduction in Table 16). We conjecture that such optimizations may make

languages with explicit computation types simpler to optimize.

IN SECTION 2 we present a cut-down version of the operational semantics for

CML presented in (Ferreira, Hennessy, and Jeffrey 1995), including a suitable

definition of bisimulation for CML programs.

IN SECTION 3 we present the variant of CML with explicit computation types,

and show that the resulting equational theory of bisimulation has better mathe-

matical properties than that of CML. This is a variant of the language presented

in (Jeffrey 1995a).

Semantics for core Concurrent ML using computation types 3

IN SECTION 4 we provide a translation from the first language into the second,

and show that it is correct up to bisimulation.

4 Alan Jeffrey

This spawns send(a,v) off for concurrent execution, then evaluates accepta.

These two processes can then communicate. In this paper, we are ignoring

CML’s threads so spawn has type:

spawn : (unit-> A)->unit

CML does not provide a general ‘external choice’ operator such as CCS +. In-

stead, guarded choice is provided, and the type mechanism is used to ensure that

choice is only ever used on guarded computation. The type A event is used as

the type of guarded processes of type A , and CML allows for the creation of

guarded input and output:

transmit

A

: (chan *A)->unitevent receive

A

: chan-> A event

and for guarded sequential computation:

wrap : (A event * (A ->B))-> B event

For example the guarded process which inputs a value on a and outputs it on b

is given:

wrap(receivea,fnx => send(b,x)) : unitevent

CML provides choice between guarded processes using choose. In CML this is

defined on lists, but for simplicity we shall give it only for pairs:

choose : (A event *A event)->A event

For example the guarded process which chooses between receiving a signal on a

or b is:

choose(receive

A

a,receive

A

b) : A event

Guarded processes can be treated as any other process, using the function sync:

sync : A event ->A

For example, we can execute the above guarded process by saying:

sync(choose(receive

A

a,receive

A

b)) : A

In fact, accept and send are not primitives in CML, and are defined:

accept

A

def

= fnx => sync(receive

A

x)

send

A

def

= fnx => sync(transmit

A

x)

This paper cannot provide a full introduction to CML, and the interested reader

is referred to Reppy’s papers (Reppy 1991; Reppy 1992) for further explanation.

The fragment of CML we will consider here is missing much of CML’s func-

tionality, notably polymorphism, guards and thread identifiers. It is similar to the

fragment of CML considered in (Ferreira, Hennessy, and Jeffrey 1995) except

Semantics for core Concurrent ML using computation types 5

� ` e : A

� ` ce : B
[c : A!B]

� ` e : bool � ` f : A � ` g : A

� ` ife thenf elseg : A

� ` e : A � ` f : B

� ` (e,f) : A *B

� ` e : A �;x : A ` f : B

� ` letx =e inf : B

� ` e : A -> B � ` f : A

� ` ef : B �;x : A ` x : A

� ` x : A

�;y : B ` x : A
[x 6= y]

� ` true : bool � ` false : bool � ` n : int � ` k : chan

� ` () : unit

�;x : A ->B ;y : A ` e : B

� ` recx =fny =>e : A ->B

TABLE 1. Types for µCML expressions

that for simplicity we do not consider the always command. We will call this

subset ‘core τ-free CML’, or µCML for short.

For simplicity, we will only use unit, bool, int and chan as base types,

although other types such as lists could easily be added.

The integer values are given by the grammar:

n ::= � � � j -1 j 0 j 1 j � � �

The channel values are given by the grammar:
k ::= a j b j � � �

The values are given by the grammar:

v ::= true j false j n j k j () j recx =fnx =>e j x

The expressions are given by the grammar:

e ::= v j ce j ife thene elsee j (e,e) j letx =e ine j ee

Finally, the basic functions are given by the grammar:

c ::= fst j snd j add j mul j leq j transmit

A

j receive

A

j choose j spawn j sync j wrap j never

µCML is a typed language, with a type system given by the grammar:

A ::= unit j bool j int j chan j A *A j A ->A j A event

The type judgements for expressions are given as judgements � ` e : A , where

� ranges over contexts of the form x1 : A1; : : :;xn : An. The type system is in

Tables 1 and 2.

We can define syntactic sugar for µCML definitions, writing fnx =>e for

recy =fnx =>e when

6 Alan Jeffrey

fst : A *B!A

snd : A *B!B

add : int *int!int

mul : int *int!int

leq : int *int!bool

transmit

A

: chan *A!unitevent

receive

A

: chan!A event

choose : A event *A event!A event

spawn : unit ->unit!unit

sync : A event!A

wrap : A event * (A ->B)!B event

never : unit!A event

TABLE 2. Types for µCML basic functions

shorthand for projections, and using

def

= as shorthand for recursive function dec-

laration. For example, a one-place buffer can be defined:

cell

A

: chan*chan ->B

cell

A

(x,y)

def

= cell

A

(snd(send

A

(y,accept

A

x),(

8 Alan Jeffrey

we have:

send(b,send)

b!send

===) ()

and so we have the higher-order communication:

send(b,send)kacceptb(a,0) =) ()ksend(a,0)

CML also allows communications of events, so we need to extend the language

in a similar fashion to Reppy (1992) to include values of event type. These values

are of the form [ge] where ge is a CCS-style guarded sum, for example:

transmit (a,0) =) [a!0]

receivea =) [a?]

choose(transmit(a,0),receivea) =) [a!0�a?]

wrap(receivea,fnx =>e) =) [a?)fnx =>e]

This syntax is based on Reppy’s, and is slightly different from that normally

associated with process calculi, for example:

� we write a!0�a? rather than a!0+a?, and

� we write a?)fnx =>e rather than a?x :e .

By extending the syntax of µCML expressions to include guarded expressions,

we get a particularly simple semantics for sync as just removing the outermost

level of [], for example:

send(a,0)

=) sync(transmit(a,0))

=) sync[a!0]

=) a!0

a!0

�! ()

In summary, we give the operational semantics for

10 Alan Jeffrey

e

Xv

�! e

0

ef

τ

�! e

0

klety =f ing [v=x]

[v = recx =fny =>g]

e

Xv

�! e

0

ce

τ

�! e

0

kδ(c ;v)

e

Xtrue

���! e

0

ife thenf elseg

τ

�! e

0

kf

e

Xfalse

����! e

0

ife thenf elseg

τ

�! e

0

kg

e

Xv

�! e

0

(e,f)

τ

�! e

0

kletx =f in hv ;x i

e

Xv

�! e

0

letx =e inf

τ

�! e

0

kf [v=x]

e

k!

A

v

��! e

0

f

k?

A

x

��! f

0

e kf

τ

�! e

0

kf

0

[v=x]

e

k?

A

x

��! e

0

f

k!

A

v

��! f

0

e kf

τ

�! e

0

[v=x]kf

0

TABLE 6. CML operational semantics: silent reductions

v

Xv

�! δ k !

A

v

k!

A

v

��! () k?

A

k?

A

x

��! x

TABLE 7. CML operational semantics: axioms

δ(fst; hv ;w i) = v δ(transmit
A

; hk ;v i) = [k !

A

v]

δ(snd; hv ;w i) = w δ(receive
A

;k) = [k?

A

]

δ(add; hm ;n i) = m +n δ(choose; h[ge 1];[ge 2]i) = [ge 1�ge 2]

δ(mul; hm ;n i) = m �n δ(wrap; h[ge];v i) = [ge)v]

δ(leq; hm ;n i) = m � n δ(spawn;v) = v()k()

δ(sync;[ge]) = ge δ(never;()) = [δ]

TABLE 8. CML operational semantics: basic functions

Semantics for core Concurrent ML using computation types 11

cell

A

hi ;o i

τ

�! letx = hi ;o iin cell

A

(snd(send

A

(sndx,accept

A

(fstx)),x))

τ

�! cell

A

(snd(send

A

(sndhi ;o i,accept

A

(fst hi ;o i)),hi ;o i))

τ

�! letx =snd(send

A

(sndhi ;o i,accept

A

(fst hi ;o i)),hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =(sndhi ;o i,accept

A

(fst hi ;o i))

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =(o,accept

A

(fsthi ;o i))

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x = σνδ (λετy =(

o
i
)

�! let

o
i
)o
i
)

(
fst

h
i
;
o
))

i
n
Tf
3.8418 0 Td
[(i
n)-698(transmi
t)]TJ
/R185 0.240113 Tf
68.1922 1.20078 Td
(A)Tj
/R195 0.240113 TTj
/R192 0.240113 Tf
5..5(=)]TJ
/R32
fst
h
i

;
o

x
=

h
i

;
o

))

i
n
s6nc
(
transmi
t

A
h
i

;
o
i
)

A
))τ

�! let

))

12 Alan Jeffrey

obvious.

Let a closed type-indexed relation R be an open type-indexed relation where

� is everywhere the empty context, and can therefore be elided.

For any closed type-indexed relation R , let its open extension R � be defined

as:

14 Alan Jeffrey

pleted:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

R �

e

0

2

l̂2

�
w
w
w
w
w
w
w
w

A higher-order weak bisimulation is a higher-order weak simulation whose in-

verse is also a higher-order weak simulation. Let �h be the largest higher-order

weak bisimulation.

Proposition 3. �

h is a congruence.

Proof. Given in (Ferreira, Hennessy, and Jeffrey 1995), using a variant of Gor-

don’s (1995) presentation Howe’s (1989) proof technique. Note that this proof

relies on the fact that we are considering the subset of µCML without always,

and hence do not have to consider initial τ-actions in summations, which present

the same problems as in the first-order case (Milner 1989). 2

Unfortunately, this equivalence does not have many pleasant mathematical prop-

erties. For example none of the usual equations for products are true:

fst(e,f) 6�

h

e

snd(e,f) 6�

h

f

(fste,snde) 6�

h

e

(For each counter-example consider an expression with side-effects, such as

cell.)

In the next section we shall consider a variant of µCML which uses a restric-

tive type system to provide more pleasant mathematical properties of programs.

We shall then show a translation from µCML into the restricted language, which

is correct up to weak bisimulation.

3 Concurrent monadic ML

In the previous section, we showed how to define an operational semantics for

CML which can be used as the basis of a bisimulation equivalence between

16 Alan Jeffrey

Using an explicit type constructor for computation has the advantage that the

only terms which perform computation are those of type Acomp, and that an

expression of any other type is guaranteed to be in normal for

20 Alan Jeffrey

e

α

�! e

0

letx(e in f

α

�! letx(e

0

in f

e

α

�! e

0

e k f

α

�! e

0

k f

f

l

�! f

0

e k f

l

�! e k f

0

e

τ

�! e

0

e2 f

τ

�! e

0

2 f

f

τ

�! f

0

e2 f

τ

�! e2 f

0

TABLE 12. CMML operational semantics: static rules

In the operational semantics of µCML, terms in many contexts can reduce, where-

as there are far fewer reduction contexts in µCMML. In fact, looking at the se-

quential sub-language of µCMML (without k or 2) the only reduction context is

let:

e

α

�! e

0

letx(e in f

α

�! letx(e

0

in f

Many of the operational rules in µCML require spawning off concurrent pro-

cesses, whereas in µCMML the main rule which produces extra concurrent pro-

cesses is β-reduction for let-expressions:

e

22 Alan Jeffrey

24 Alan Jeffrey

ular we require the lts to be value deterministic:

e

Xf

-

e

0

if then f = g and e0 = e00

e

26 Alan Jeffrey

V [[true]] = true

V [[false]] = false

V [[n

28 Alan Jeffrey

V [[cell]]�

h

recx1 = fnx2)

letx3([x1]

in letx4(letx5(letx6(letx8(letx9(letx11([x2]

in [x11:r]

in letx10(letx12(letx13([x2]

in [x13:l]

inx12?

in [hx9;x10i]

inx8:l!x8:r

in letx7([x2]

in [hx6;x7i]

in [x5:r]

inx3 x4

TABLE 20. Example translation of µCML+ into µCMML

ciency. This suggests that µCMML may be a suitable virtual machine language

for a µCML compiler, where verifiable peephole optimizations can be performed.

4.2 Correctness of the translation

We will now show that the translation of µCML+ into µCMML is correct up to

bisimulation. We will do this by defining an appropriate notion of weak bisimu-

lation between µCML and µCMML programs. This proof uses Milner and San-

giorgi’s (1992) technique of ‘bisimulation up to’.

A closed type-indexed relation between µCML

30 Alan Jeffrey

such that the following diagrams can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

R �

e

0

2

l2

�
w
w
w
w
w
w
w
w

and:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

2

l2

?

e

0

1

l̂1

?

R �

e

0

2

l2

?

Let . be the largest expansion.

Proposition 6. . is a precongruence on µCML and µCMML.

Proof. Similar to Proposition 3. 2

For example, the preorder�β given by β-reducing in all contexts is an expansion:

e f �β g [f =y][e=x]

[e = (recx = fny)g)]

letx([e] in f �β f [e=x]

if truethen f elseg �β f if false then f elseg �β g

e �β e

e �β f �β g

e �β g

e �β f

C[e]�β C[f]

Proposition 7. If e �β f then e . f .

Proof. Show that each of the axioms forms an expansion. The result then

follows from Proposition 6. 2

We can use the proof technique of strong bisimulation up to (�;v) to show that

the translation from µCML to µCMML forms a weak bisimulation.

Proposition 8. Any strong bisimulation up to (&;.) is a weak bisimulation.

Proof. An adaptation of the results in (Sangiorgi and Milner 1992). 2

Proposition 9. The translation of µCML+ into µCMML is a strong bisimula-

tion up to (�β;�β).

Proof. Let R be:

R e

A

= f(e ;E[[e]]) j ` e : Ag R v

A

= f(v ;V [[v]]) j ` v : Ag

32 Alan Jeffrey

and:

letx(e

0

inV [[v]]x

�β letx(E[[e

0

]] inV [[v]]x

�β letx(E[[e

0

]] inE[[g]][x=z][V [[v]]=y]

= E[[letz =e

0

ing [v=y]]]

The other cases are similar. 2

Proposition 10. e is weakly bisimilar to E[[e]].

Proof. Follows from Propositions 7, 8 and 9. 2

