
Computer Science Report

Proof methodologies for behavioural
equivalence in Distributed picalculus

Alberto Ciaffaglione
Matthew Hennessy

Julian Rathke

Report 2005:03 April 2005

Department of Informatics
University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Proof methodologies for behavioural equivalence in
Distributed picalculus

Alberto Ciaffaglione, Matthew Hennessy andJulian Rathke

Abstract. We focus on techniques for proving behavioural equivalence between systems inD

2 Alberto Ciaff

Proof methodologies for behavioural equivalence in Distributedpicalculus 3

categories, for systems, and agents. A typical system takes the form

(new e : E)(l~P� j k~Q�) j l~R�
This represents a system with two sites,l andk, with the agentsP andR running
at the former andQ at the latter; moreoverP andQ, although executing at dif-
ferent sites, share some private information,e, of typeE. The syntax for agents,
or processes, is an extension of that of thepicalculus [SW01]. There are input
and output on local channels, parallelism, matching of values, iteration, and a
migration construct. For example, in the system

l~P j goto k:Q� j k~R�

the processQ can migrate froml to k, leading to the resulting system

l~P� j k~Q j R�
Finally, processes have the ability to create new instances of names (channels,
newc, and sites,newloc); their declaration types dictate the use to which these
will be put.

The values,V, communicated along channels consist of tuples ofsimple val-
ues, v

4 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

Base Types: base::= int j bool j unit j > j : : :
Value Types: A ::= base j C j C@loc j K

Local Channel types: C ::= rhTi j whTi j rwhTi
Location Types: K ::= loc[c1 : C1; : : : ; cn : Cn]; n � 0

(providedci = c j implies i = j)

Transmission Types: T ::= (A1; : : : ;An);n � 0

Figure 2. Types forDpi - informal

This generates a new reply channel,r, at the declaration typeR, and awaits
input on this channel to be printed. Concurrently, it sends to the server site an
agent, which sends to the request channel the tuple consisting of some value,vc,
hopefully an integer, and the reply address,r@c. Then, running the combined
system

S jC (1)

should result in a boolean being printed at the client’s site, the value of which is
determined by the primality ofvc.

2.2 Typing

Dpi is a capability based language, in the sense that the behaviour of processes
depends on the capabilities the various entities have received in their environ-
ment. Formally, these capabilities are represented as types, and the various cate-
gories of types we use are given in Figure 2. Apart from the standard base types,
and the specialtop type>, the main ones are

local channel types: these are ranged over byC and can take the formrwhTi,
giving the ability to both read and write values of typeT, or the restricted
supertypesrhTi andwhTi;

non-local channel types: these take the formC@loc, and a value of this type is
a structured value,c@l;

location types: these take the formloc[c1 : C1; : : : ; cn : Cn]; receiving a value
l of this type gives access to the channels, or resources,ci at typeCi , for
1 � i � n.

In this overview we omit one further category of types, that ofregistered names,
as they play no part in the current paper; as usual, the reader is referred to
[HMR04] for an explanation of their role in ensuring consistency between the

Proof methodologies for behavioural equivalence in Distributedpicalculus 5

6 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

The rules for typing agents are more or less borrowed from thepicalculus

[PS00], with the addition of a rule for migration. For example, (local) input and
output are handled by the rules

(ty-out)

Γ ‘w V : T
Γ ‘w P
Γ ‘w u : whTi
Γ ‘w u!hViP

(ty-in)

Γ

Proof methodologies for behavioural equivalence in Distributedpicalculus 7

that is required of∆ in order to type both the server and the client is to letS, the
type associated with the request channel, to berwh int ;whbooli@loc i.

There is an interesting point to be made here. The client generates the reply
channelr with both read and write capabilities; only the latter is sent to the
server, viareq, and the former is retained for internal use. This use of restricted
capabilities provides a certain level of protection to the client, as it knows that
the reply from the server can not be usurped by any other client.

2.3 Behaviour

The behaviour of a system, that is the ability of its agents to interact with other
agents, depends on the knowledge these agents have of each others capabilities.
In the example just discussed we have seen the client generating a reply channel
with two capabilities, but only making one of these externally available; indeed,
the proper functioning of the client/server interaction depends on such decisions.

Definition 2.1 (Configurations). A configurationconsists of a pairIBM, where

� I is a type environment which associates some type to every free name inM

� there is a type environmentΓ such thatΓ ‘ M andΓ <: I
This latter requirement means that ifI can assign a typeTI to a namen, then
Γ can assign a typeTΓ such thatTΓ <: TI. Again, viewing types as sets of
capabilities, this means thatTI, representing the knowledge of the external user,
is a subset ofTΓ, the actual set of capabilities used to type the systemM. �

So we define the behaviour in terms of actions over configurations; these are of
the form

I B M ���! I0 B M0 (2)

where the label� can take any of the following forms

� �: an internal action, requiring no participation by the user;

� (ẽ : Ẽ)k:a?V: the input of valueV along the channela, located at the sitek.
The bound names in (˜e) are freshly generated by the user;

� (ẽ : Ẽ)k:a!V: the output of valueV along the channela, located at the sitek.
The bound names in (˜e) are freshly generated by the environment.

The rules for defining these actions are given in Figure 3 and Figure 4, a slightly
different but equivalent formulation to that given in [HMR04]. The guiding prin-
ciple for (2) to happen, is thatM must be able to perform the action�, and the
user must have, inI, the capability to participate in the action. The rules use
some new notation for looking up the types associated with channels in envi-
ronments: the partial functionsIr (k;a) andIw(k;a) return the read, respectively
write, type associated with the channela at the locationk in I (of course these

8 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

(m-in)

Iw(k;a) # I ‘k V : Iw(k;a)

I B k~a?(X) R� k:a?V����! I B k~RfjV=Xjg�

(m-weak)

I; he : Ei B M (d̃:D̃)k:a?V�������! I0 B M0

I B M (e:E ed:eD)k:a?V����������! I0 B M0
bn(e) < I

(m-out)

Ir (k;a) #
I B k~a!hViP� k:a!V���! I; hV : Ir (k;a)i@kB k~P�

(m-open)

I; he : >i B M (d̃:D̃)k:a!V�������! I0 B (2 -188.29 -29.38 T58 TD[(D)]TJf 21Tf 4.5n4TJ/f 16.48 0 216.4f1F8 T58 TD[(.-57 TD[(fiTD[16 Tf .15 0 TD[(ane)20]TJ/F11 f 44.27 3.18 0 TD[(-)];)]TJ/F11 9.96 Tf 4.15 0 TD[(h)]TJ/F8 9.96 Tf 3.64 0 TD[(e)]TJ/F19.96 Tf 7.19 0 TD[(:F8 9.96 Tf 3.56 -05())]TJ/F1I)]TJ/F20 9.96 Tf 8.68 0 TD[(B)]TJ/F8 9.96 Tf 9.05 0 TD[(M)]TJ/F1 6.97 Tf 13.4 4.24 TD[(()]TJ/F8 6.97 Tf 2.42 0 TD[(e)]TJ/F1 6.97 Tf .6540 TD[(:)]TJ/F15 6.62 Tf 1.93 0 3D[(E)]TJ/F21 6.97 Tf 6.78 1.63 8D[(e)]TJ/F8 6.97 Tf -0.42 -1.63 TD[(d)]TJ/F1 6.97 Tf 3.67 0 TD[(:)]TJ/F21 6.97 Tf 2.01 1.65 TD[(e)]TJ/F15 6.62 Tf -0.07 -1.65 TD[(D)]TJ/F1 6.97 Tf 4.7810 TD[())]TJ/F8 6.97 Tf 2.35 0 TD[(k)]TJ/F10 6.97 Tf 3.22 0 TD[(:)]TJ/F8 6.97 Tf 1.74 0 TD[(a)]TJ/F1 6.97 Tf 3[(<32 TD[(!)]TJ/F8 6.05Tf 3.09 0 TD[(V)]TJ/F11 9.96 Tf -40.45 -4.24 TD[(�)376(�)222(�.05T22(�)222(�)222(�)3.72�)223(�)222(�)376(!)-221(I)]TJ/F11 6.97 Tf 56.43 3.61 TD[(0)]TJ/F20 9.96 Tf 5.13 -3.61 TD[(B)]TJ/F8 91 6.97 Tf 151TJ/F-39 0]TJ/F11 7.97 Tf 6.48 0 TD[(I)]TJ/F1 6.97 Tf -162.57 -37.29 TD[(()]TJ/F19 6.97 Tf 2.32 0 TD[ctxtTJ/F1 6.97 Tf 5.2 064D[(-)]TJ/F19 6.97 Tf 2.33 0 TD.22pen)]TJ/F1 6.97 Tf 197.9 -91.88 l S BT/F11 9.96 Tf 66.63 -102.2 TD[(I)]TJ/F20.97 Tf 5.2 0518 0 TD[(B)]026F19 6.97 Tf 2.33 05.60 TD[(!)]TJ/F8 6.98J/F8 6.98J22(ˇ)222(�)222(�23E)]T000)223(�)222(�)376(!)-221(I)]TJ/F11 6.97 Tf 56.43 3.61 TD[(0)]TJ/F20 9.96 Tf 5.13 -3.61 TD[(B)]TJ/F 9.96 Tf 9.0 4.25 T639 0 m 173.61 T639 0 4.25 TD[(()]ToD[(2 -188.273.77J/F1 6.97 Tf 197.9 -91.88 l S BT/F11 9.96 Tf 66.63 -102.2 TD[(I)]TJ/F2(()]ToD[(1096 T-3 TD[(=]TJ/F11 9.96 Tf 342.2 TD[(N)]TJ/F20.97 Tf 5.2511 9 0 TD[(B)]026F19 6.97 Tf 2.33 05.60 TD[(!)]TJ/F8 6.98J/F8 6.98J22(˛)222(�)222(�23E)2�)222(�)222(�)367(!)-221(I)]TJ/F11 6.97 Tf 44.27 3.61 TD[(0)]TJ/F20 9.96 Tf 5.13 -3.61 TD[(B)]TJ/F8J/F8 9.96 Tf 3.D[(f) TD[(B)](=]TJ/F11 9.96 Tf 342.2 TD[(N)]TJ/F27 Tf 2.33 098(#)]TJn)]TJ/F1 6.97 Tf 197.9 -91.88 l S BT/F11 9.96 Tf 66.63 8.61 0 TD[N)]TJ/F27 Tf 2.33 9.96 -3 TD[(=]TJ/F11 9.96 Tf 37.2 TD[(I)]TJ/F20.97 Tf 5.2 0518 0 TD[(B)]026F19 6.97 Tf 2.33 05.60 TD[(!)]TJ/F8 6.98J/F8 6.98J22(˛)222(�)222(�23E)2�)222(�)222(�)367(!)-221(I)]TJ/F11 6.97 Tf 44.27 3.8.61 0 TD[N)]TJ/F27 Tf 2.33 19 37 -3 TD[(=]TJ/F11 9.96 Tf 371D[(0)]TJ/F20 9.96 Tf 5.13 -3.61 TD[(B)]TJ/F8J/F.96 Tf 9.09)]TJ3 0 5.-57 TD[(� Tf 28.67 462.26 Tm 626F19 6.97.97 Tf 2.626 0 TD[(()]TJ/F8 7.97 Tf 2.65 0 TD[(e)]TJ/F1 .96 Tf 9.0 0 TD[(-)]Tf11 6.97 Tf 8.7 3..19 0 TD[(:F/F15 7.57 Tf 28.67 82.2 TD[(N)]TJ/F27 Tf 28.65.TD[(-)]TJ/F19 6.91 6.97 Tf 15 4.60 T90 TD[(B)]TJ/F8 9f 6.48 0 TD[(I)]TJ/F1 6.97 Tf -162.57 -37.29 TD[(()]TJ/F19 6.97 Tf 2.32 0 TD[newTJ/F1 6.97 Tf 5.2411 9[(-)]TJ/F19 6.97 Tf 2.33 0 .96 Teak)]TJ/F1 6.97 Tf 18.42 0 TD[())]TJ/F11 9.96 Tf -28.27 -11.96 TD[(I)]TJ/F10 9.96 Tf 6.47 0 TD[(;)]TJ/F11 9.96 Tf 4.15 0 TD[(h)]TJ/F8 9.96 Tf 3.62 0 TD[(e)]TJ/F1 9.96 Tf 7.19 0 TD[(:)]TJ/F11 9.96 Tf 5.53 0 TD[(>i)]TJ/F200.97 Tf 5.2 0518 0 5D[(B)]026F19 6.97 Tf 2.33 05.610 TD[(?)]TJ/F8 6.67J/F8 6.98J22(�)222(�)222(�23E)3�)222(�)22313.26 -4.24 0 TTD[(I)]TJ/1 9.96 Tf -28.27 -11.96 TD[(I)]TJ/F10 9.96 Tf 6.41 0 TD[(;)]TJ/F11 9.96 Tf 4.15 0 TD[(h)]TJ/F8 9.96 Tf 3.64 0 TD[(e)]TJ/F1 9.96 Tf 7.19 0 TD[(:)]TJ/F11 9.96 Tf 5.53 4D[(0)]TJ/F20 9.96 Tf 5.13 -3.62 TD[(B)]TJ/F8 9.96 Tf 9.05 0 T339 592 -188.34296 T38 T58 TD[(D)]TJf 21Tf 4.5n4TJ/f 16.48 0 216.4f1F8 T58 TD[(.-57 TD[(�TD[16 Tf .15 0 TD[(ane)20]TJ/F11 f 44.27 3.18 0 TD[(-)];)]TJ/F11 9.96 Tf 4.15 0 TD[(h)]TJ/F8 9.96 Tf 3.64 0 TD[(e)]TJ/F19.96 Tf 7.19 0 TD[(:F8 9.96 Tf 3.56 -05())]TJ/F1I)]TJ/F20.97 Tf 5.2 0528 0 TD[(B)]026F19 6.97 Tf 2.33 05.610 TD[(!)]TJ/F8 6.97J/F8 6.98J22(�)222(�)222(�23E)3�)222(�)222(�)367(!)-221(I)]TJ/F11 6.97 T 216.4f1F8 T58 TD[(.-57 TD[(�TD[16 Tf .1510 TD[(ane)19]TJ/F11 f 44.27 3.18 03TD[(-)];)]TJ/F11 9.96 Tf 4.85 0 TD[(h)]TJ/F8 9.96 Tf 3.64 0 TD[(e)]TJ/F19.96 Tf 7.19 0 TD[(:F8 9.96 Tf 3.56 -05(8D[(0)]TJ/F20 9.96 Tf 5.13 -3.61 TD[(B)]TJ/F8J/F.96 Tf 9.09)]TJ[(M)]TJ/F11 6.97 Tf 8.7 3.61 0 TD[(:F/F15 7.57 Tf 28.67 462.26 Tmn)]TJ/F1 7.97 Tf 8.43 0 TD[(()]TJ/F8 7.97 Tf 2.65 0 TD[(e)]TJ/F1 0.97 Tf 3.54 0 TD[() 626F19 6.97.97 Tf 2-172-188.27.8]TJ/F1FF19 6. 7.97 Tf 2.6432 0 TD[(gurn)]TJ/F1 7.97 Tf 1997 T 0 TD[3.)]TJ/F1 7.97 Tf Tf 60 TD[(external(�)actions-in-conte)14(xtT�)for)]TJ/F1 7.97 Tf 94.5n4TJ/f DF19 6. 7.97 Tf 25.35 0 TD[(pihe)24(w)-249(Henne3[(2.96 250(and)-3[(2.96 4.25 TD[()]ToD[(109nne3409(V)]TJ/Fmay)TD34(not)TD35(e)14(xist,)TD55Tf 4.19 6.97 Tf 2.33 78f 2.5 TD[(V)]TJ/F1 9.96 Tf 9.62 0 TD[(:)]TJ/F11 9.96 Tf 5.53 0 TD[(I)]TJ/F8 6.97 Tf 6.48 3.61 TD[(w)]TJ/F1 9.96 Tf 5.15 -3.61 TD[(()]TJ/F8 9.96 Tf 3.31 0 TD[(k)]TJ/F10 9.96 Tf 4.59 0 TD[(;)]TJ6.97 Tf 2.33 7 4.3 TD[(b#)]TJ/F10 9.96 Tf 4. 60 TD[(,)TD56)for)TD35(e)14(xample,)TD55Tindicates)TD35(that)TD34(.4 0TD35(writ 0TD35(typ 0TD35(is)TD35(in-he)24-12098 0 Tn)]TJ/F1 dee4.7 05 de/F82ned).)TD29(W)7atth7 05 e)14(xtracth7 06(names)T 06(from)T 06(entries)T 06(in)T 06(en)39(vironments)T 06(with)T 06(.4 0T 06(functionh)]TJ/F8 9.96 Tf 0Teak)]TJ/F1 F11 6.97 T()]ToD[(1095TD[(0)]TJ/F15 7.8 9.96 Tf 4.15 0 TD[(:FF8 6]TJ/F19.96 Tf 7.194D[(-)]TJ/,)TD20]de/F82ned)TD07(byh)]TJ/F8 9.96 Tf 34.92 0J/F1 F11 6.97 T()]ToD[(1095TD[(0)]TJ/F15 7.Tf 6.47 3.61 TD[(r)]Tu)]TJ/F10 9.96 Tf 4.59 0 TD[(;)]TJ6.21 9.96 Tf 4.TD[(r)]T=J/F11 f 44.27 3.10.D[([(r)]Tu)]TJ/F10 9.96 Tf83 4D[(0)]Tf 4.19 6.98 9.96 Tf 176432 0 TD[F11 6.97 T()]ToD[(1095TD[(0)]TJ/F15 7.Tf 6.47 3.61 TD[(r)]Tu)]TJ/F10D[())]TJ4.59 0 TD[)-[(r)]Tu

Proof methodologies for behavioural equivalence in Distributedpicalculus 9

(m-weak), allows us to derive the following action from the serverS

∆ B S (r@c:R)�������! ∆; r@c : R B s~goto c:r!hisprime(vc)i stop� (3)

where� is the input actions:req?(vc; r@c), because

∆; r@c : R B S ���! ∆; r@c : R B s~goto c:r!hisprime(vc)i stop�

Similarly, (m-out) requiresI to have areadcapability ona atk, in order for
k~a!hViP� to be able to perform the obvious output; note that here the current
knowledge of the user,I, is augmented by whatever new knowledge which can
be gleaned from the received valueV. Intuitively, hV : Ti@k decomposes the
valueV, relative to the typeT, from the standpoint ofk; this last only comes into
play whenV contains instances of local channels, which are then interpreted as
channels atk. But the important point in (m-out) is that the type at whichV
is added toI is Ir (k;a), the reception type that the user currently has ona at k.
Thus (m-open) allows us to deduce

∆ B (new r@c : R) s~req!hvc; r@ci stop� (r@c:R)������! ∆; r@c : Rw B s~stop� (4)

where is the output actions:req!hvc; r@ci, because with (m-out) we can derive

∆; r@c : > B s~req!hvc; r@ci stop� ��! ∆; r@c : Rw B s~stop�

The use of> is simply to ensure that we have a valid configuration; but note that
the user has gained only the restricted capabilityRw on the new channelr, rather
than the more liberal declaration capabilityR, because the former is the type at
which the user can receive values alongreq.

The rules for the internal actions are given in Figure 4, and most are straight-
forward. We have labelled some as�-actions, which will be useful in the next
section; but for the moment these labels can be ignored. The only interesting
rule is (m-comm), which formalisescommunication. Note that, in the hypothe-
ses of both variations, arbitrary user environments,I1 andI2, are allowed. This
may be surprising at first, but intuitively�-actions should be independent of all
external knowledge. For example, we can use (3) and (4) above to derive

I B S j (new r@c : R) s~req!hvc; r@ci stop� ���!
I B (new r@c : R) s~goto c:r!hisprime(vc)i stop� j s~stop�

for an arbitraryI.

We now have a labelled transition system in which the states are configura-
tions, and we can apply the standard definition of (weak) bisimulation.

10 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

(m-comm)

I1 B M (ẽ:Ẽ)k:a?V�������! I01 B M0 I2 B N (ẽ:Ẽ)k:a!V�������! I02 B N0

I B M j N ���! I B (newee : eE)(M0 j N0)

(m-comm)

I1 B M (ẽ:Ẽ)k:a!V�������! I01 B M0 I2 B N (ẽ:Ẽ)k:a?V�������! I02 B N0

I B M j N ���! I B (newee : eE)(M0 j N0)

(m-move)

I B k~goto l:P� ���!� I B l~P�

(m-c:create)

I B k~(newc c : C) P� ���!� I B (new c@k : C) k~P�

(m-l:create)

I B k~(newloc l : L) P� ���!� I B (new l : L) k~P�

(m-eq)

I B k~if v = v then P else Q� ���!� I B k~P�

(m-neq)

I B k~if v1 = v2 then P else Q� ���!� I B k~Q� (v1 , v2)

(m-split)

I B k~P j Q� ���!� I B k~P� j k~Q�

(m-unwind)

I B k~�P� ���!� I B k~�P j P�
Figure 4. Internal actions-in-context forDpi

Proof methodologies for behavioural equivalence in Distributedpicalculus 11

Definition 2.2 (Bisimulations). We say a binary relation over configurations is
abisimulationif both it, and its inverse, satisfy the following transfer property

(IM B M) R (IN B N) (IM B M) R (IN B N)

implies

(IM0 B M0)

�

?
(IM0 B M0) R (IN0 B N0)

�̂

�

www

Here we use standard notation, see [MPW92], with�==) representing ���!�� ���!�
���!�, and �̂==) meaning ���!�, if � is �, and �==) otherwise. This allows a single

internal move to be matched by zero or more internal moves.
We let�bis denote the largest bisimulation between configurations. �

Rather than writing (I B M) �bis (I B N); we use the more suggestive notation

I j= M �bis N

This can be viewed as a relation between systems, parameterised over type envi-
ronments which represent user’s knowledge of the systems’ capabilities.

It is this bisimilarity�bis which is the object of our study: we aim to show
that, despite the complexity of its definition, tractable proof techniques can be
developed for it.

Finally, we should remark this is not an arbitrarily chosen version of bisimu-
lation equivalence. In [HMR04] its definition is justified in detail: it is shown to
be, in some sense, the largest reasonable typed equivalence betweenDpi systems.

3 Proof techniques

The basic method for showing that two systemsM andN are equivalent, relative
to an environmentI, is to exhibit a parameterised relationR such thatIj= MRN,
and demonstrate that it satisfies the requirements of being a bisimulation. In this
section we give a number of auxiliary methods, which can considerably relieve
the burden of exhibiting such relations.

The following Theorem is proved in [HMR04], and justifies a form of con-
textual reasoning.

Theorem 3.1 (Contextuality).

� I j= M �bis N andI ‘ O imply I j= M jO�bis N jO
� I; he : Ei j= M �bis N impliesI j= (new e : E) M �bis (new e : E) N �

We can also manipulate system descriptions. Let� be the least equivalence
relation which satisfies the rules in Figure 5, and is preserved by the constructs
� j � and (new e : E)(�); this is referred to asstructural equivalence.

12 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

(s-extr) (new e : E)(M j N) � M j (new e : E) N if bn(e) < fn(M)

(s-com) M j N) (

Proof methodologies for behavioural equivalence in Distributedpicalculus 13

�-actions, include

k~P j Q� �bis k~P� j k~Q�
k~goto l:P� �bis l~P�

k~(newc c : C) P� �bis (new c@k : C) k~P�

But these�-labelled internal actions also provide us with a very powerful
method for approximating bisimulations, in the spirit of [JR04].

Definition 3.5 (Bisimulations up-to-�). A binary relation between configura-
tions is said to be abisimulation up-to-� if it satisfies the following transfer
properties

(IM B M) R (IN B N) (IM B M) R (IN B N)

implies

(IM0 B M0)

�

?
(IM0 B M0) Al

14 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

Proof: We leave to the reader to check that the relation (�bis � R � �bis) is a
bisimulation over configurations. The key properties for establishing this are the
two inclusions ���!� � �bis (Proposition 3.4) and� � �bis (Proposition 3.2),
Lemma 3.3 and transitivity, in Definition 3.5, of bothAl (due to Lemma 3.6)
andAr . The result then follows, since (�bis � R � �bis) trivially containsR. �

4 Crossing a firewall

Let us consider thefirewall example, first proposed in [CG98] and studied at
length in [GC99, LS00, MN03] within versions of Mobile Ambients. Intuitively,
a firewall is a domain to which access is restricted: only agents which are per-
mitted, in some sense, by the firewall are allowed in. A simple example takes the
form

F ((new f : F) f ~P j �goto a:tell!h f i�
Here f is the name of the firewall, which is created with the capabilities described
in the location typeF, andP is some code which maintains the internal business
of the firewall. A typical example of the capabilities could be given by

F = loc[info : rwhIi; req : rwhRi]
which allow reading to and writing from two resourcesinfo andreq in f . Then
P could, for example, maintain appropriate services at the resources; of course,
it would also be able to use non-local resources it knows about in its current
environment.

The existence of the firewall is made known only to another domain,a, via
the information channeltell located there. An example is the following

A(a~R j tell?(x) goto x:Q�

wherea is informed of f by inputing on the local channeltell. If we consider an
arbitrary type environmentΓ, we have the execution

Γ B F j A ���!� (new f : F)(f ~P j �goto a:tell!h f i j Q�) j a~R� (5)

so the codeQ is allowed to execute locally within the firewall.

Proof methodologies for behavioural equivalence in Distributedpicalculus 15

Then one might expect to be able to derive

Γ j= F j A �bis (new f : F)(f ~P j �goto a:tell!h f i j Q�) j a~R� (7)

But this happens not to be true, because of the implicit assumption that the infor-
mation channeltell in a can only be accessed by partners in the entry protocol,f
anda. But, in order for (6) to be true, we must haveΓ ‘a tell : rwhFri; and this
allows other agents in the environment access totell. For example, consider

Rogue(b~goto a:tell!hbi�
and suppose that the only type inference fromΓ involving b is Γ ‘ b : loc; so
Γ is not aware of any resources atb. NeverthelessΓ ‘ Rogue, and therefore
Contextuality(Theorem 3.1) applied to (7) would give

Γ j= F j A j Rogue �bis

(new f : F)(f ~P j �goto a:tell!h f i j Q�) j a~R� j Rogue

But this is obviously not the case, as the left-hand system can reduce via a series
of �-steps (representing the interaction betweenA andRogue) to the state

Γ B F j a~R� j b~Q�
Under reasonable assumptions about the codeQ, the right-hand system has no
corresponding reduction to a similar state. On the left-hand side the codeQ, now
located atb, can not run, while on the right-hand side, no matter what�-steps are
made,Q will be able to execute atf .
Thus (7) can not be true.

However, our framework allows us to amend the correctness statement (7)
above, taking into account the implicit assumption about the information channel
tell. The essential point is that the protocol works provided thatonly the firewall
can write ontell. This can be formalised by proving the equivalence between the
two systems relative to a restricted environment, one which does not allow write
access totell.

First some notation. Let us writeΓ ‘max
k V : T to mean

� Γ ‘k V : T

� Γ ‘k V : T0 impliesT <: T0

In other words,T is thelargesttype which can be assigned toV. Now suppose
I is a type environment which satisfies

(i) I ‘max
a tell : rhFi

(ii) I ‘ a~R�

(iii) I ‘ (new f : F) f ~P�

16 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

The import of the first requirement, which is the most important, is that systems
in the computational context can not write ontell. The other requirements, which
are mainly for convenience, ensure that the residual behaviour ata and f is well-
behaved, although a side-effect is that they also can not write ontell. Under these
assumptions, we prove

I j= F j A �bis (new f : F)(f ~P j �goto a:tell!h f i j Q�) j a~R� (8)

First note that (up-to structural equivalence)

I B F j A ���!� F j At j a~R�
via (m-split) and (m-ctxt), whereAt is a shorthand fora~tell?(x) goto x:Q�.
So, by Propositions 3.2 and 3.4, it is suffi

Proof methodologies for behavioural equivalence in Distributedpicalculus 17

� M has the formFg j At j Πn (a~tell!h f i�)n

� N has the formFg j f ~Q� j Πn (a~tell!h f i�)n

whereΠn (a~tell!h f i�)n, for somen � 0, meansn copies ofa~tell!h f i� run-
ning in parallel.

Proposition 4.1. The parameterised relationR defined above is a bisimulation
up-to-�.

Proof: SupposeJ j= MRN. Let us consider all possible actions fromJ BM. In
fact, it is sufficient to consider the case (b) above, whenJ andM andN are of the
prescribed form. The actions fall into one of three categories (for convenience
we shortenΠn (a~tell!h f i�)n with Πn).

18 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

Note that the firewallF allows, in principle, multiple entries of agents from
a. So, for example, ifR

Proof methodologies for behavioural equivalence in Distributedpicalculus 19

The first requirement establishes thatthe computational context can not read on
req, while the following points ensure that the residual behaviour at the server
and the clients is well-behaved, with the side-effect that neitherS0 nor C0i can
read onreq.

First, let us show that one client interacts correctly with the server

I j= S jC1 �bis S j c1~(newc r : R) r!hisprime(v1)i jC01� (10)

Note that (up-to-structural equivalence)

I B S jC1
���!�� (new r@c1 : R) Sr j s~S0� j s~req!hv1; r@c1i� j c1~C01�

where we useSr as a shorthand fors~�req?(x; y@z)goto z:y!hisprime(x)i�, and

I B S j c1~(newc r : R) r!hisprime(v1)i jC01� ���!��
(new r@c1 : R) Sr j s~S0� j c1~r!hisprime(v1)i� j c1~C01�

By Propositions 3.2, 3.4,

20 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

Proposition 5.1. The parameterised relationR defined above is a bisimulation
up-to-�.

Proof: SupposeJ j= M R N. The actions fromJ BM in the case (b) above fall
into one of three categories.

� First Sr is responsible

Ir BM ���!� s~�req?(x; y@z)goto z:y!hisprime(x)i jR0� j s~req!hv1; r@c1i� jΠn

whereR0 is a shorthand forreq?(x; y@z)goto z:y!hisprime(x)i. But

Ir B s~�req?(x; y@z)goto z:y!hisprime(x)i j R0� j s~req!hv1; r@c1i� j Πn
���!�

Sr j Π1 j s~req!hv1; r@c1i� j Πn

and this can be matched by

Ir B N ���!�� Sr j Π1 j c1~r!hisprime(v1)i� j Πn

because both configurations belong toR, clause (b), up-to structural equiva-
lence.

� The third component,Πn (s~req?(x; y@z)goto z:y!hisprime(x)i�)n, is responsi-
ble for the action, which is eithers:req?

D
i j ;d j@k j

E
or (e:E)s:req?

D
i j ;d j@k j

E
.

These actions correspond to the delivery of (new) data by the environment
(from which the system is allowed to learn infinitely new names), and are
followed by the action (m-move). However, it is easy to see thatIr B N can

Proof methodologies for behavioural equivalence in Distributedpicalculus 21

This completes our proof of (10), that one client can interact correctly with
the server. Contextual reasoning can now be employed to generalise this result
to an arbitrary number of clients. For example, let us show

I j= S jC1 jC2 �bis S j Πi2f1;2g ci~(newc r : R) r!hisprime(vi)i jC0i � (11)

Because ofI ‘ C2 (requirement (iii) above),Contextualityapplied to (10) gives

I j= S jC1 jC2 �bis S j c1~(newc r : R) r!hisprime(v1)i jC01� jC2 (12)

On the other hand, repeating the analysis ofC1 onC2, we obtain

I j= S jC2 �bis S j c2~(newc r : R) r!hisprime(v2)i jC02�
But I ‘ C1 (again (iii)) also impliesI ‘ c1~(newc r : R) r!hisprime(v1)i j C01�,
and therefore, byContextuality

I j= S jC2 j c1~(newc r : R) r!hisprime(v1)i jC01� �bis

S j Πi2f1;2g ci~(newc r : R) r!hisprime(vi)i jC0i �
So we conclude (11) from (12), Proposition 3.2, and transitivity of�bis.

It is then a simple matter to extend this reasoning, using induction, to show
that an arbitrary number of clients can be handled

I j= S j Πi2f1;:::;ng Ci �bis S j Πi2f1;:::;ng ci~(newc r : R) r!hisprime(vi)i jC0i �
This we leave to the reader.

As a further example of the modularity of our proofs, let us consider a partic-
ular instantiation of the residual processes,S0 andC0i : we setS0 to stop andC0i
to r?(x) printi !hxi, whereprinti are local channels. For convenience we restrict
attention to two clients, and let us assume that they send the integer valuesv1 = 4
andv2 = 3, respectively, to the server. So we have

S00 (s~�req?(

22 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

ther, to the tasks

I j= S00 j c1~(newc r : R) r!hisprime(4)i j r?(x) print1!hxi� �bis

S00 j c1~print1!h f alsei�

I j= S00 j c2~(newc r : R) r!hisprime(3)i j r?(x) print2!hxi� �bis

S00 j c2~print2!htruei�
Note thatContextualitydoes not allow us to eliminateS00 from these judgements,
sinceI ‘ S00 is not true. Nevertheless, it is a simple matter to construct a
witnessing bisimulation to demonstrate directly these two equivalences, as the
reader can check.

6 Metaservers

In this section we describe amemory serviceby involving thenewloc operator of
Dpi, which allows the creation of new instances of sites. A (meta)server contains
a resourcesetup, where requests are received, and installs the service at a new
site, thus providing personalised treatment to its clients.

A first version of the server receives a return address, generates a new lo-
cated memory cell, and installs some code there, meanwhile delivering the new

Proof methodologies for behavioural equivalence in Distributedpicalculus 23

An alternative, slightly different version of the server leaves to the clients the
responsibility to create the memory cells, just installing the servicing code at the
proffered site

S0 (s0~�setup0?(x; y@z) goto x:Mem j goto z:y!�

Correspondingly, clients generate an acknowledgement channel and a new loca-
tion, send a request to the server, and await the server to acknowledge the service
has been installed

C0i (ci~(newc t : T) (newloc mi : M) goto s0:setup0!hmi ; t@cii j t?Pi(mi)�

whereT = rwhunit i.
We want now to relate the two different approaches, therefore connecting the

behaviour of the two following systems, relative to a typing environmentI
I j= S jC1 jC2 (13)

I j= S0 jC01 jC02 (14)

Our goal is to establish that, from the point of view of the clients, under certain
hypotheses the two kinds of serversS andS0 lead to equivalent behaviour. This
means finding a suitable type environmentI such that

I j= S jC1 jC2 �bis S0 jC01 jC02 (15)

It is immediate to notice that the correctness of this protocol requires thatthe
computational context should have neither write nor read access to thesetup
andsetup0 channels. Thus, the equivalence can be proved relative to a restricted
environmentI, satisfying

I ‘max
s setup : > I ‘max

s0 setup0 : >
Now, the internal actions can be used to deduce a derivation from (13) and (14)
to the systems

I j= S j Πi2f1;2g (new mi : M

24 Alberto Ciaff

Proof methodologies for behavioural equivalence in Distributedpicalculus 25

(b) or (new r1@c1 : R; r2@c2 : R;m1 : M) S j Πn j S!2 jC?2 j M1 jC!1 jC?1

(c) or (new r1@c1 : R; r2@c2 : R;m2 : M) S j Πn j S!1 jC?1 j M2 jC!2 jC?2

(d) or (new r2@c2 : R;m1 : M) S j Πn j S!2 jC?2 j M1 jCP1

(e) or (new r1@c1 : R;m2 : M) S j Πn j S

26 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

with theDpi calculus [HR02b]. In order to cope with bisimulation equivalence
in Dpi [HMR04], it is natural to look for bisimulations up-to in the spirit of
[SM92]. More precisely, we have introduced in our workbisimulations up-to
�-reductions, which have been inspired by a similar approach to concurrent ML
[JR04]. This technique actually relieves the burden of exhibiting witness bisim-
ulations, and its feasibility has been proved to be successful, combined mainly
with Contextuality

Proof methodologies for behavioural equivalence in Distributedpicalculus 27

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes (I and
II). Information and Computation, 100(1,2), 1992.

[PS00] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the polymorphic
picalculus. Journal of ACM47(3), 2000.

[SM92] Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In Proc.
of CONCUR, Lecture Notes in Computer Science630, Springer, 1992.

[SW01] Davide Sangiorgi and David Walker.The picalculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[US01] Asis Unyapoth and Peter Sewell. Nomadic pict: correct communication infrastructure
for mobile computation. In Proc. ofPOPL, 2001.

