
Local model checking for a value-based modal

�-calculus.

J. Rathke M. Hennessy

June 26, 1996

Abstract

We �rst present a �rst-order modal �-calculus which uses parameterised max-

imal and minimal �xpoints to describe safety and liveness properties of processes

which communicate values along ports. Then, using a class of models based on

symbolic graphs, we give a local model checking proof system for this logic. The

system is a natural extension of existing proof systems and although it is sound it

is incomplete in general.

We prove two di�erent completeness results for certain sub-logics. The �rst is

for safety properties alone, where only parameterised maximal �xpoints are used

while the second allows both kinds of �xpoints but restricts the use of parameter-

isation.

1 Introduction

Model checking refers to the veri�cation that a system, represented as a point t of some

model, satis�es some property expressed in a particular property logic. The modal

�-calculus is one, very expressive, logic which is often used to express properties of

systems; in addition to the usual boolean connectives it contains modal operators for

describing the possible actions of a system together with maximal and minimal �xpoints

for describing safety and liveness properties. In papers such as [7, 11, 12, 13] sound and

complete proof methods are developed for checking that formulae from this calculus are

satis�ed by terms from a pure process calculus, such as CCS [10], represented as points

from a �nite labelled transition system. The object of the this paper is to generalise

these methods to value-passing process calculi, which are used to describe distributed

systems which manipulate and interchange data along communication channels.

The approach we take is to generalise Winskel's tag set proof method [13] for pure

processes. We �rst give a brief outline of this method: Consider the process

P (a:a:P

which can perform the abstract action a twice and then return to its original state.

Evidently this can perform an in�nite sequence of a actions and this property can be

expressed in the modal �-calculus with the formula

�X:haiX:

1

Let us try to formally establish that P satis�es this formula, which we write as

P : �X:haiX: (1)

Because we can unwind recursive de�nitions this can be reduced to establishing

a:a:P : hai�X:haiX:

But this reduction does not lead very far; the only applicable rule now is that associated

with the modality hai which reduces this judgement to

a:P : �X:haiX:

A further unwinding and application of the modality rule will only reduce this to the

original judgement (1).

The tag set method records the points that have already been checked so that veri-

fying

P : �X:haiX

is reduced, by the (tagged) Recursive Unwinding rule, to checking the judgement

P : hai�X:[P]haiX:

The tag [P] indicates that there is no further need to check the process P against this

formula. Now by an application of the modality rule and a further application of the

tagged recursive unwinding rule we reduce our proof obligation to establishing

P : �X:[P; a:P]haiX:

We can now terminate the checking routine since P is in the tag set, i.e. P has already

been visited.

We generalise this approach to model checking by

� replacing pure process terms and their associated labelled transition systems with

value-passing process terms and their symbolic transition graphs, [5], and

� by generalising the property logic to a �rst-order modal �-calculus.

Let us �rst give an indication of the nature of this generalisation and why the various

extensions to the proof system are required. The �rst-order modal �-calculus allows the

use of boolean expressions from some unspeci�ed boolean language, which includes �rst

order quanti�cation, and, as in [6], the propositional modal operators haiF; [a]F are

whenever a value is input on the channel a a larger value can subsequently

be output the channel b.

This property can be formalised by the modal formula

[a?]8xhb!yi(y > x)

and the only way to establish the judgement

P : [a?]8xhb!yi(y > x)

is to reduce it, using rules associated with the modality [a?] and universal quanti�cation,

to establishing

b!(x+ 1):P : hb!yi(y > x);

a judgement involving open process terms.

The presence of these open terms engenders further complications in the allowed

judgements. For example consider the judgement

Q : [a?]8xhb!yi(eveny)

where Q is the process de�ned by

Q(a?x: even(x) 7! b!x:Q; b!(x+ 1):Q:

Using the natural proof rule for the modality [a?] this can be reduced to the judgement

(even(x) 7! b!x:Q; b!(x+ 1):Q) : hb!yi(eveny)

which can only be reduced to the relativised judgements

on the assumption that x is even ; b!x:Q : hb!yi(eveny)

and

on the assumption that x is odd; b!(x+ 1):Q : hb!yi(eveny):

In short our model checking procedur 0.24 Tf
9.oe Td
(b)Tj
/R126 0.24 Tf
5.03984 0 Td
(!(60.24r.4999.6(j4.56016 0 T(ex.1602 0)(the)000.7(pro)-999.349(c3(ev)-3(for)-16))]o699.349(cedur 0.24 Tf
9pro)-99.349(c3(ev)-3(for)[sr5.03984 0 Td
lcur 0.24 7 0.24 Tf
4.56828 h-e6o)-99.349(c363Fev)-3(fo8]TJos(elati0ider)-16000.1(the)-16000.7(jud26 0.24 7(ar(()Tj
/R4/R128 0.lit Tfj
/R126 03984 0 Td
[(?d
(?]/R128 0.24 Tf
6.96013dd)0 Td
(x)TjB/R128 0.24 Tf
5.5199294 Tf
10.8 `j
28.0801 0 Td
(b)T6 0 Td
(b)Tj
TR126 0.24 Tf
5.0398108 0 Td
(7!):j
28.0801 0 Td
(b)16 0 Td
(y)Tj
F01(olving)-13999.7(o40op)-0.32(en)]TJ
9(cess)]TJ
72.7203 0 Td
[(/R126 0.24 BR126 0.24 Tf
5.03984 Tf
5.03984 04000.3(with)ae)Tj
25.43-16))]o699.126 0.24.4 TdeR160 0.24 Tf 0.24 T)200 Td
lcu4establishing)TT8 Td
([)Tj4000.3(with)an-16000.7(complications)o)-99.349/R166 0.24 Tf
12.4.6(judgeme(fogemen)279.
[(the)-14Suc16000.7(jhR126 0.24 a)o)-99.349/R166 0.24 Tf-e6oc363Fevhasnnel bns

ability of a process to output an in�nite sequence of values along the channel a which

are alternatively even and odd.

In order to give an outline of the rules associated with these formulae consider the

process

P (a!0:a!1:P

and the judgement

true ` P : A:(0=z) (2)

The (tagged) Recursive Unwinding rule can not be applied directly here as the formula

is a recursively de�ned formula applied to a speci�c value 0. The main new rule in the

proof system is a generalisation rule which enables us to generalise a judgement about

speci�c value, such as (2), to a more general statement about arbitrary values, to which

the recursive unwinding rule can be applied:

App

B ` t : A

B[~e=~z] ` t : A:(~e=~z)

Using this rule, with B instantiated to even(z), the judgement (2) can be reduced to

establishing

even(z) ` P : A; (3)

since even(0) implies true. Here the Recursive Unwinding rule can be applied. But

because the judgements are relativised the tags will now have to consist of process terms

together with boolean expressions. Thus the judgement (3) can be reduced to the judge-

ment

even(z) ` a!1:P : ha!xi(x = z mod 2) ^ C:(z + 1=z) (4)

where C is the abstraction �X[A]ha!xi(x = z mod 2) ^X:(z + 1=z) and A is the tag set

f(even(z); P)g. Using standard rules this in turn leads to two judgements

even(z) ` a!1:P : (0 = z mod 2) and even(z) ` a!1:P : C:(z + 1=z):

The �rst is easily established as it is simply a property of the data space but the second

requires a further generalisation, a use of the rule App, in order to once more unwind

the recursively de�ned property. This time the appropriate instantiation of the boolean

B is odd(z + 1) as odd(z + 1) implies even(z) and therefore (4) can be reduced to the

judgement

odd(z) ` a!1:P : C

After another application of the Recursive Unwinding rule, followed by an application

of standard rules we obtain the two judgements

odd(z) ` P : (1 = z mod 2) and odd(z) ` P : D:(z + 1=z)

where D is the abstraction �X[B]ha!xi(x = z mod 2) ^X:(z + 1=z) and B is the tag set

f(even(z); P); (odd(z); a!1:P)g. The �rst is straightforward to establish while a �nal use

4

of generalisation reduces the latter to even(z) ` P : D. Here the deduction terminates

as (even(z); P) is in the tag set B.

The use of the rule App, and in particular the choice of the appropriate instantiation

of the Boolean B, is essential in the development of such proofs and it is easy to see that

a bad choice of instantiation will hinder the successful termination of a proof. The use

of boolean expressions in tag sets can also lead to di�culties in generating successfully

terminating proofs but their use is essential; if we only used process terms in the tag sets

the resulting proof system would be unsound. For example it would be easy to establish

the judgement

true ` P : (�Xha!xi(x = z) ^X:(z + 1=z))(0=z)

where P is the process

P (a!0:P;

and this is obviously untrue as the property states that P can output an in�nite sequence

of increasing values.

This completes our overview of the proof system. It is formally de�ned in Section 3

which also contains a soundness theorem. However in order to abstract away from

the details of a speci�c value-passing language we represent processes using terms over

symbolic transition systems, [5]. These graphs are described in Section 2 where they are

also used as models for interpreting formulae from our �rst order modal �-calculus.

We now give an overview of the remaining sections of the paper, which address com-

pleteness issues. One can not

Semantically P satis�es the property F but we will show that

true ` P : F

is not derivable in our system. The argument will be quite simple: for any

F ::= B j F _ F j F ^ F j h� iF j [�]F jhc!xiF j [c!x]F j hc?iG j [c?]G j A:(~e=~z)

G ::= 9x:F j 8x:F

A ::= X j �X[A]F j �X[A]F

Figure 1: Grammar for the logic

but abstractions which use them may only be applied to restricted parameters; param-

eters which are either recursion variables or do not use any recursion variables. Thus

A:(z + 1=z) is forbidden but formulae such as ha!xiA(x + 1=z) are allowed. The proof

of this completeness theorem also uses the method of characteristic boolean expressions

although the details are somewhat more complicated.

This sub-language of property formulae may seem overly restricted but we also give

some examples to show that it is quite expressive. In particular in Section 6 we give

an example of a process which inputs an in�nite sequence of integers and continually

outputs the greatest one received so far. This property can be expressed using restricted

parameters and we also outline a proof that the process enjoys this property.

The paper ends with

variables called RVar ; note that we generally use lower case x; y; : : : to denote variables

from DV ar and upper case X;Y; : : : to denote recursion variables. F ranges over the

main syntactic category of modal formulae while G ranges over quanti�ed formulae,

n

b;�

�! n

0

implies n

�

b�;�

�! n

0

�

n

b;c!e

�! n

0

implies n

�

b�;c!e�

�! n

0

�

n

b;c?x

�! n

0

implies n

�

b�;c?

�! (x)n

0

�

Figure 2: Symbolic operational semantics for open terms.

t

b;�

�! t

0

implies t�

�

�! t

0

� if [[b�]] = tt

t

b;c!e

�! t

0

implies t�

c!v

�! t

0

� if [[b�]] = tt and [[e�]] = v

t

b;c?

�! (x)t

0

implies t�

c?

�! (x)t

0

� if [[b�]] = tt

Figure 3: Concrete operational semantics for closed terms.

and we use t; u; : : : to range over terms. These terms are the expressions that we will be

using in the tag sets. In actual fact a tag set A will contain pairs (B; t) where B is some

boolean expression.

We de�ne pairs (t; �) to be closed terms whenever � is an evaluation and for con-

venience it is written as t�. We let p; q; : : :

[[B]]�� =

(

CT (G) If � j= B

; Otherwise

[[F ^ F

0

]]� = [[F]]�\ [[F

0

]]�

[[F _ F

0

]]� = [[F]]�[[[F

0

]]�

[[h� iF]]�� =

n

p j 9p

0

� p

�

�! p

0

and p

0

2 [[F]]��

o

[[[�]F]]�� =

n

p j 8p

0

� p

�

�! p

0

implies p

0

2 [[F]]��

o

[[hc!xiF]]�� =

n

p j 9p

0

; v � p

c!v

�! p

0

and p

0

2 [[F [v=x]]]��

o

[[[c!x]F]]�� =

n

p j 8p

0

; v � p

c!v

�! p

0

implies p

0

2 [[F [v=x]]]��

o

[[hc?iG]]�� =

n

p j 9(x)p

0

� p

c?

�! (x)p

0

and (x)p

0

2 [[G]]��

o

[[[c?]G]]�� =

n

p j 8(x)p

0

� p

c?

�! (x)p

0

implies (x)p

0

2 [[G]]��

o

[[9x:F]]�� = f(y)p j 9v 2 V al � ((y)p)v 2 [[F [v=x]]]��g

[[8x:F]]�� = f(y)p j 8v 2 V al � ((y)p)v 2 [[F [v=x]]]��g

[[A:(~e=~z)]]�� = ([[A]]�)�[~e=~z]

[[X]]� = �(X)

[[�X[A]F]]� = �f:(��:[[F]]�[f=X]� n �A)

[[�X[A]F]]� = �f:(��:[[F]]�[f=X]� [�A)

where �A(�) = ft� j (B; t) 2 A and � j= Bg and n; [and \ denote pointwise set

di�erence, union and intersection respectively.

Figure 4: Interpretation of logic in a model T (G).

Lemma 1 (Reduction Lemma)

Let L = V ! PT be a complete lattice and let ' : L! L be a monotone functional.

Let B � V and write f �

B

g to mean 8v 2 B:f(v) � g(v). Then for any f 2 L,

f �

B

�x:'(x) i� f �

B

'(�x:('(x) [�[B]f))

where �[B]f(v) = f(v) if v 2 B and is empty otherwise.

Proof. Straightforward generalisation of the proof in [13]. 2

It is interesting to note at this point that the corresponding theorem for least �xpoints

f �

B

�x:'(x) i� f �

B

'(�x:('(x) n �[B]f))

does not hold. To see how this fails consider the following example:

Using the sets T; V;B = fa; bg and letting �; denote the constant empty function

we de�ne �(�;) = f where f(a) = fag; f(b) = ; and �(g) = d where d(a) = d(b) = fag

whenever g 6= �;. It is easy to see that d = �x:�(x), but notice that d 6� �(�x:(�(x) n

d)) = f .

Lemma 2 If (B

0

; t) 62 A for all B

0

then

t j=

B

�X[A]F i� t j=

B

F [�X[A; (B; t)]F=X]:

Proof. Uses Lemma 1 and simple properties about substitutions. 2

10

3 The Proof System

We now present a proof system for verifying whether a formula of the logic holds at a

particular point of the model. The system is similar in style to those of [6, 4] in that the

proof rules carry side conditions which leave proof obligations of checking implication

in some language of boolean conditions and of calculating

Id

B ` t : B

Cut

B

1

` t : F; : : : ; B

n

` t : F

W

1�i�n

B

i

` t : F

Cons

B

1

` t : F

B

2

` t : F

(B

2

j= B

1

) Ex

B ` t : F

9x:B ` t : F

(x 62 fv(t; F))

�

B ` t

0

: F

0

B ` t : F

(t

0

�

�

t; F

0

�

�

F) ^

B ` t : F

1

B ` t : F

2

B ` t : F

1

^ F

2

_

L

B ` t : F

1

B ` t : F

1

_ F

2

_

R

B ` t : F

2

B ` t : F

1

_ F

2

h� i

B ` t

0

: F

B ^ b ` t : h� iF

t

b;�

�! t

0

[�]

B ^ b

1

` t

1

: F; : : : ; B ^ b

n

` t

n

: F

B ` t : [�]F

where f(b

1

; t

1

); : : : ; (b

n

; t

n

)g = f(b; t

0

) j t

b;�

�! t

0

g

hc!i

B ` t

0

: F [e=x]

B ^ b ` t : hc!xiF

t

b;c!e

�! t

0

[c!]

B ^ b

1

` t

1

: F [e

1

=x]; : : : ; B ^ b

n

` t

n

: F [e

n

=x]

B ` t : [c!x]F

where f(b

1

; t

1

; e

1

); : : : ; (b

n

; t

n

; e

n

)g = f(b; t

0

; e) j t

b;c!e

�! t

0

g

hc?i

B ` (y)t

0

: G

B ^ b ` t : hc?iG

(t

b;c?

�! (y)t

0

)

[c?]

B ^ b

1

` (y

1

)t

1

: F; : : : ; B ^ b

n

` (y

n

)t

n

: G

B ` t : [c?]G

where f(b

1

; (y

n

)t

1

); : : : ; (b

n

; (y

n

)t

n

)g = f(b; (y)t

0

) j t

b;c?

�! (y)t

0

g

8

B ` t : F

B ` (x)t : 8x;i

f

x 62 fv

8

B ` t :F

B

App

B ` t : A

B[~e=~z] ` t : A:(~e=~z)

�

0

B ` t : �X[A]F

(B; t) 2 A �

1

B ` t : F [�X[A[(B; t)]F=X]

B ` t : �X[A]F

�

B ` t : F [�X[A[(B; t)]F=X]

B ` t : �X[A]F

8B

0

:(B

0

; t) 2 A implies B ^ B

0

j= �

Figure 6: Fixpoint rules.

z)_X:(z+1=z), states `there exists an output on channel a of a value at least as large as

z'. We instantiate z at 0 to get the formula which simply reads \there exists an output,

on channel a

Induction gives B ` t : F [F

k

0

=X] for all k

0

� k � 1, but this is just B ` t : F

k

0

+1

.

Otherwise F

0

must be of the form �Y [A

0

]F

00

and we have, writing A for �X[A]F ,

�

B ` t : (F

00

[A=X])[�Y [A

0

; (B; t)]F

00

[A=X]=Y]

B ` t : �Y [A

0

]F

00

[A=X]

:

We can reorder the premis to read B ` t : (F

00

[�Y [A

0

; (B; t)]F

00

=Y])[A=X] and hence by

induction we get

B ` t : (F

00

[�Y [A

0

; (B; t)]F

00

=Y])[F

k

0

=X]:

Again, by reordering and using the �-rule on Y we get B ` t : �Y:[A

0

]F

00

[F

k

0

=X] as

required.

Case: Application.

If F

0

is a �xpoint formula then we simply apply induction and use the App rule. In

the case where F

0

isX:(~e=~z) we need a further (easy) induction to show that ifB ` t : F

k

0

then B[~e=~z] ` t : F

k

0

[~ ~z

[[B]]� = B

[[Q

1

_ Q

2

]]� = [[Q

1

]]� _ [[Q

2

]]�

Proof. Similar to the proof in [6] though we use well-founded induction on tag restricted

formulae. The only case of interest here is that for �xpoints. If t appears in the tag set

then rule �

0

gives the result. Otherwise, by induction we know that

[[t satF [�X[A

0

]F=X]]]� ` t : F [�X[A

0

]F=X]

where A

0

= A [(t sat �X[A]F; t). But [[t satF [�X[A

0

]F=X]]]� is easily seen to be

[[t sat �X[A]F]]� so by rule �

1

semantics. We write t j=

s

�;Bb"

F i� t 2 [[F]]

s

�B

b

".

Proposition 10 If F (not necessarily recursion closed) has empty tag sets then t j=

�;Bb"

F i� t j=

s

�

�

;Bb"

F (where t 2 �

�

� 2

" . t satB = B["(~z)=~z]

" . t satF

1

^ F

2

= " . t satF

1

^ " . t satF

2

" . t satF

1

_ F

2

= " . t satF

1

_ " . t satF

2

" . t sat h� iF =

W

t

b

0

;�

�!t

0

b

0

^ " . t

0

satF

" . t sat [�]F =

V

t

b

0

;�

�!t

0

b

0

! " . t

0

satF

" . t sat hc!xiF =

W

t

b

0

;c!e

�! t

0

b

0

^ " . t

0

satF [e=x]

" . t sat [c!x]F =

V

t

b

0

;c!e

�! t

0

b

0

! " . t

0

satF [e=x]

" . t sat hc?iG =

W

t

b

0

;c?

�!(x)t

0

b

0

^ " . (x)t

0

satG

" . t sat [c?]G =

V

t

b

0

;c?

�!(x)t

0

b

0

! " . (x)t

0

satG

" . (y)t sat 8x:F = 8w:(" . t[w=y] satF [w=x])

" . (y)t sat 9x:F = 9w:(" . t[w=y] satF [w=x])

" . t satA:(~e=~z) = ["(~e)=~z] . t satA

" . t sat �X[A]F =

(

bBc if (B

b

"; t) 2 A

t satF [�X[A

0

]F=X] otherwise

" . t sat �X[A]F =

(

� if (B

b

"; t) 2 A

(t satF [�X[A

00

]F=X]) otherwise

where w = new(t; ";8x:F), and tag sets A

0

= A [((" . t sat �X:[A]F)

b

"; t) and A

00

=

A [((" . t sat �X:[A]F)

b

"; t).

Figure 10: Sat construction for symbolic semantics

is a limit ordinal. Let � be the least such ordinal. M is a lattice of monotone functions

so for all � < � and b

0

� b we have that t 62 '

�

(b

0

) and so '

�

= '

�

n �(b; t). The result

now follows from the monotonicity of '. 2

Lemma 12 t j=

s

Bb"

�X[A]F implies t j=

s

Bb"

F [�X[A[(B

b

"; t)]F=X].

Proof. Follows from previous lemma taking T to be T (G) and B to be the boolean

expressions (up to equivalence) ordered by j=

�1

. 2

The approach to proving completeness is the same as the proof of the previous section.

That is we de�ne a characteristic formula t satF which is the solution a �xpoint formula

over a �rst-order language of boolean expressions. We no longer require parameterised

�xpoint formulae as we deal with the recursion parameters using theB

b

0

therefore any boolean information required to do this proof can be expressed without

least �xpoints also. Again we note that the tag sets will contain more information than

is strictly necessary to de�ne sat ; for �xpoints we only need to record the term t and

the environment " in the tag sets but for the sake of a cleaner presentation later on we

include the extra syntax.

We de�ne what it means for a formula F to be tag restricted in a similar manner to

before; �X:[A]F (or �X:[A]F) is tag restricted if either A is empty or if A = A

0

[(B

b

"; t)

with t 62 A

0

then B is " . t sat �X:[A

0

]F (or " . t sat�X:[A

0

]F) and �X[A

0

]F is also tag

restricted. A formula F is tag restricted if all of its abstraction subformulae are tag

restricted. A term t can now appear more than once in the tag set of a tag restricted

formula. However, any given term t along with a substitution " may appear at most

once.

This change will of course a�ect our ordering�. The relation� given in the previous

section

DApps(B) = DApps(X) = ;

DApps(F

1

^ F

2

) = DApps(F

1

_ F

2

) = DApps(F

1

) [DApps(F

2

)

DApps(h�iF) = DApps([�]F) = DApps(F)

DApps(8x:F) = DApps(9x:F) = DApps(F)

DApps(�X[A]F) = DApps(�X[A]F) = DApps(F)

DApps(A:(e=z)) =

(

DApps(A) [feg If e \RPar = ;

DApps(A) If e 2 RPar

Figure 11: De�nition of function DApps over formulae.

All environments "

0

used when calculating

us that �[~e=~z] j= [["

0

. t satA]]� and because ~z does not appear free

i?

-

M

m

-

Sp

o!

-

kQ

Q

Q

Q

k

�

�

�

�

6

k

St

Figure 12: Flow diagram for process Max.

Given a syntactic description of a process it is a simple matter to compile it down to a

symbolic graph. This treatment can be given to Max and we see in Figure 13 that the

resulting graph is in fact �nite. We should point out that at node t

1

in this graph the �

transition leaving this node is guarded by the boolean y � 0. In light of the fact that y

is an non-negative integer we elide this guard. Also, as a companion to this � transition

is another � move with false guard y < 0. We prune this branch of the graph for the

sake of clarity.

The property that we wish to proveMax to satisfy is that for every input on channel

i there is an output on channel o of the maximum value received so far. Naturally there

are internal actions to be accounted for so we will consider weak modalities, hh�ii and

[[�]]. A term will satisy hh�iiF if it can do �nitely many � transitions followed by

an � transition to a term which satis�es F . Because we demand only �nitely many �

transitions we use least �xpoints to de�ne these modalities:

hh�iiF � (�X:h� iX:(~z=~z) _ h�iF):(~x=~z)

where ~x = fv(F). Similarly for box modalities

[[�]]F � (�X:[�]X:(~z=~z) ^ [�]F):(~x=~z):

We write the speci�cation as a greatest �xpoint formula,

F

Max

� [[i?]]8y:A:(y;0=z; z

0

)

where z is a parameter which represents the last value input, z

0

is a parameter which

represents the maximum value received so far and A is de�ned to be �X:(F

1

^ F

2

). We

use two formulae F

1

and F

2

to reect the fact that, in addition to immediately outputting

after an input, the process is able to receive (at most) the next input to be compared

before any output transition occurs. These formulae can be written.

F

1

� hho!xii[[i?]]8y

0

:F

3

and F

2

� [[i?]]8y

0

:hho!xiiF

3

where

F

3

� ([x = z

0

^ z

0

> z] _ [x = z ^ z � z

0

]) ^X:(y

0

; x=z; z

0

):

It is possible to give a proof that tt ` t

0

: F

Max

, however, purely in order to make

the proof concise, we use more speci�c formulae to replace F

1

and F

2

. We actually will

use

F

1

� hho!xii[[i?]]8y

0

:(h� i)F

3

_ F

3

)

25

�t

0

Z

Z

Z

i?y

~

�

�

?

�t

0

0

�

=�

�

�

�

�

�

�
o!y

>

J

J

J

J

J

J

�

^

�t

1

i?y

?

�t

3

Z

Z

Z

�

~ �

�

�
i?y

0

>

-

�t

0

1

�

y > y

0

; �

�t

4

J

J

J

J

J

J

o!y

^

�

�

�

i?y

0

>

�

�

�

�
�
>

�t

2

i?y

0

-

�

6

�

�

�

�

}Z

Z

Z

o!y

0

�

}Z

Z

Z

i?y

y � y

0

; �

�t

5

y

0

> y; �

-

�

�

y

0

� y; �

}Z

Z

Z

i?y

�

o!y

0

�

}Z

Z

Z

�

�

�

6

�

i?y

�

Figure 13: Symbolic graph for Max.

and

F

2

� [[i?]]8y

0

:ho!xih� iF

3

:

These formulae di�er from the former two only in their � modalities.

In the following proof B ` t; t

0

: F will be an abbreviation for the two sequents

B ` t : F and B ` t

0

: F and B

Max

will denote the boolean expression [x = z

0

^ z

0

>

z] _ [x = z ^ z � z

0

] so that F

3

� B

Max

^X:(y

0

; x=z; z

0

).

The goal tt ` t

0

: F

Max

follows from rules 8, [�]; [i?];^; � and App

by using the rule ^. Taking each of these in turn we see that the former pair can be

reduced, by using � unfolding and h� i rules (twice for the t

0

0

case) and then a ho!i rule

to get

c

"

0

` t

2

: [[i?]]8y

0

(h� iF

3

_ F

3

)[A

1

=X][y=x]: (5)

Secondly we reduce the latter pair of sequents to

c

"

0

` t

3

: ho!xih� iF

3

[A

1

=X] (6)

again by using � unfoldings and [�] rules and a [i?] rule. Now both (5) and (6) can

be reduced to the single judgement

c

"

0

` t

4

: F

3

[A

1

=X][y=x] by using the appropriate

modality rules. We notice that

c

"

0

j= B

Max

[y=x] so, using rules ^, Cons and Id, our proof

obligation becomes

c

"

0

` t

4

: A

1

:(y

0

; y=z; z

0

). We strip the outer application with rule

App to get

c

"

1

` t

4

: A

1

where

c

"

1

� z = y

0

^ z

0

= y. This judgement is ready to be � unfolded to become

c

"

1

` t

4

: (F

1

^ F

2

)[A

2

=X]

where A

2

= �X:[A; (

c

"

1

; t

4

)]F

1

^F

2

. At this point we do a case analysis on y and y

0

. This

is done by using the Cut rule to the two sequents

y > y

0

^

c

"

1

` t

4

: (F

1

^ F

2

)[A

2

=X] (7)

and

y

0

� y ^

c

"

1

` t

4

: (F

1

^ F

2

)[A

2

=X]: (8)

We deal with (7)]

where A

3

= �X[A; (

c

"

1

; t

4

uses a very simple language of boolean expressions containing only the atoms tt and �.

Of greater interest though is the way in which their treatment of �xpoint abstractions

di�ers from the present work. In [1] �xpoints are interpreted as functions from vectors of

names (analagous to our evaluations) into sets of terms or agents but, at the level of the

proof system, abstractions are dealt with pointwise. On the other hand we, by means

of the App rule, deal with �xpoint expressions as abstractions proper. The �-unfolding

rule of [1] is given by

p : �[

~

b=~a][�X(~a)�=X]

p : (�X(~a)�)(

~

b)

where ~a and

~

b are vectors of names and all tag set information has been elided. The

�xpoint formula is unfolded at the point

~

b and this point is substituted into the unfolding.

We would do no such substitution as we have already abstracted away from the particular

point

~

b by using App. These two approaches are more or less equivalent for the �-calculus

and indeed for our restricted parameter sublogic of Section 5, because the nature of

the data domain is such that only �nitely many points will be encountered in a proof

tableaux for a �xpoint formula. However the limitations of the pointwise approach

become apparent when we consider more general languages of data expressions. The

example proof that a process P satis�es

(�X:ha!xi(x = z mod 2) ^X:(z + 1=z)):(0=z)

which we presented in the introduction would be infeasible using the pointwise approach;

we would necessarily start at the point 0, then progress by unfolding and modality rules

to checking at the point 1, similarly on to point 2 and so on. Therefore our proof

system generalises the approach in [1] and Section 5 shows that we incorporate (modulo

�-calculus technicalities) the proof system of [1] by emulating the pointwise approach

using the

b

" boolean forms.

References

[1] R. Amadio and M. Dam. Toward a modal theory of types for the �-calculus. 1996.

To appear.

[2] A. Arnold and P.

[6] M. Hennessy and X. Liu. A modal logic for message passing processes. Technical

