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Abstract

Milner's action calculus implements abstraction in monoidal categories,

so that familiar �-calculi can be subsumed together with the �-calculus

and the Petri nets. Variables are generalised to names: only a restricted

form of substitution is allowed.

In the present paper, the well-known categorical semantics of the �-

calculus is generalised to the action calculus. A suitable functional com-

pleteness theorem for symmetric monoidal categories is proved: we de-

termine the conditions under which the abstraction is de�nable. Alge-

braically, the distinction between the variables and the names boils down

to the distinction between the transcendental and the algebraic elements.

The former lead to polynomial extensions, like e.g. the ring Z[



1 Introduction

Algebraically, the �-abstraction arises from a property of certain structures |

namely, that each polynomial can be reduced to a normal form with a single

coe�cient. This property is known as combinatorial [5, ch. 6] or functional



may change during the execution, since di�erent communication channels that

may be received can open the di�erent computation paths, or preempt them.

This is the idea of a mobile process. The corresponding generalisation of the �-

calculus is the �-calculus [22]. The main di�erence is that a function is applied

to its input sequentially, while a mobile process can communicate with any

of the processes running in parallel with it, provided that there is a common

communication channel. The function application has been generalised to the

communication, which may be non-sequential and non-deterministic.

The main feature of the �-abstraction is that it does not just bind a param-

eter x, for which the received input is to be substituted, like the �-abstraction

does, but it also speci�es a communication channel y, where the sought input

must be received. A �-abstraction operator is thus in the form y(x), and it binds

x, and adds y as a free channel name, ready for the input. A process pre�xed

with such an operator will not consume just any argument immediately preced-

ing it, and substitute it for x, like an old �-term would do. A process/�-term

must �rst �nd a parallel process (another �-term) sending its output through

y. It can be recognized by a pre�x in the form yu, where u is the name being

sent. In case several such are running in parallel, pre�xed, say, with yu

1

, yu

2

etc., only one of their outputs/pre�xes will be consumed, and the choice will

be made nondeterministically. Any of the channels u

1

; u

2

: : : may thus end up

being substituted for x.

The action calculus provides means for reducing this complex reduction pro-

cedure to a familiar abstraction/application routine. There are two dimensions

of this apparent syntactic miracle: the controls, and the dynamics. The controls



Several classes of natural examples, modelling static action calculi, are de-

scribed in subsection 3.3. A di�erent application of the obtained semantics is

presented in subsection 3.2: it is shown how allowing the ordinary substitution

reduces the action calculus to the cartesian �-calculus. This sheds some light on

the degeneration of the extensional higher-order action calculus to the ordinary

�-calculus, described in [20] | and shows how narrow is the passage from the

cartesian to the monoidal abstraction. The simplicity with which the latter has

been introduced in the action calculus conceals a genuinely fundamental idea,

mostly behind the concept of a name, with its constrained substitution.

While weakening the cartesian setting leaves the abstraction operations vir-

tually unchanged, it has deep repercussions on the substitution, which on its

turn weakens the �-reduction. The original constraints, imposed on the sub-

stitution in the action calculus, were computationally motivated: if names are

channel parameters, then only the proper channel names should be substituted

for them, and surely not arbitrary process expressions. Variables, as the value

parameters, on the other hand, accomodate substitution of all expressions that

can be evaluated.

The algebraic treatment provides di�erent explanations. In algebra, the

substitution is implemented by means of extensions: a variable x, freely adjoined

to, say, the ring of integers Z, leads to the polynomial extension Z[x]. The fact

that x is free for substitution of any element means that it is transcendental,

unconstrained by any equations overZ. On the other hand, an algebraic element,

which does satisfy some equations, can only be replaced by elements satisfying

the same equations. E.g., if x

2

� 2 = 0 holds for x, then only �x can be

substituted for it, without invalidating the equation. Of course, this x is just

p

2 and the substitution constraint formally means that the extension Z[

p

2] =

Z[x]=(x

2

� 2) has exactly one nontrivial endomorphism �xing Z, induced by

the assignment

p

2 7! �

p

2. Conversely, the \name"

p

2 can be viewed as an

abbreviation of something like [x;x

2

= 2]. We shall later present names exactly

in this form.

The idea that names are some algebraic elements, as opposed to variables

as transcendental elements, suggests a general treatment of the constrained

substitution, along the lines of Galois theory. Luckily, this general treatment

need not be developed very far: the names arising in the action calculus turn

out to be the algebraic elements of a very special kind, characterised by a simple

set of equations (23{25). They are consequences of the conversion rules of the

name abstraction (cf. de�nition 3.2). The point of the functional completeness

is that the name abstraction, together with its conversion



the composition is written in the form f � g, (referring to (f � g)(x) = f(g(x)))

rather than g � f .



The notion of a model is de�ned in the usual way.



(a) For each � : m �! n in A [x;Q] there is a unique �x:� : k 
m �! n in

A , such that

� = ad(�x:�) � (x
m) (5)

(b) The functor ad : A �! A [x;Q] has a left adjoint ab, such that the com-

posite ab� ad is just tensoring with k. The unit and the counit of the adjunction

are respectively in the forms �

m

= x
m and "

m

= !
m, for some ! : k!>.

(c) A [x;Q] is isomorphic with the Kleisli category for a comonad over the

endofunctor k 
 (�) : A �! A .

Proof. (a))(b) Consider the maps

A [x;Q]

�

m;n

�

//

�x:(�)



commute. In the presence of (a), this commutativity is equivalent to the equa-

tion �x:� � ' = (�x:�) � ab('). This is the required naturality of (9) in m.

The naturality in n boils down to the equation �x:ad(f) � � = f � �x:�, for

all f 2 A (n; n

0

). But this is again a consequence of the uniquess part of (a).

Hence the adjunction ab a ad. By correspondence (6) its unit and counit

will be as asserted in (b). So it remains to prove that ab � ad(f) is k
 f for all

f from A .

Since A [x;Q] is a monoidal category, any ' : m

0

! m in it satis�es

(x
m) � ' = x
 ' = (k 
 ') � (x
m

0

): (12)

Putting ' = ad(f), we get that

m

0
//

x
m

0

��

ad(f)

k 
m

0

��

ad(k
f)

m

//

x
m

k 
m

(13)

commutes, since ad is a monoidal functor, identity on objects, and hence k 


ad



functor ad : A �! A [x;Q] adds a dummy x, whereas ab : A [x;Q] �! A

abstracts over x.

A is functionally complete with respect to a set of names [X;Q] if for all

x 2 X and Y � Xrfxg, A [Y ;Q] is functionally complete with respect to [x;Q].

Moreover, the abstraction should be uniform, in the sense that the diagram

A [x; Y ;Q]

//

ab

Y

x

��

ad

x;Y

Z

A [Y ;Q]

��

ad

Y

Z

A [x; Y; Z;Q]

//

ab

Y;Z

x

A [Y; Z;Q]

(14)

must commute for all Y; Z � X r fxg. Moreover, the canonical isomorphism

ab

Z

y

� ab

y;Z

x

�

=

ab

Z

x

� ab

x;Z

y

: A [x; y; Z;Q] �! A [Z;Q] (15)

induced by the fact that both sides are adjoint to ad

Z

x;y

, must come from the

symmetry � : k 
 `

�

! `
 k.

An abstraction situation is a pair (K; Q), such that every K




-category A is

functionally complete with respect to any set of names [X;Q].

Remarks. This last quanti�er over all sets of names is not as extensive as it

appears: by proposition 2.2, A is functionally complete for [X;Q] if and only it

is functionally complete for [X

0

;Q], where X

0

is the image of type : X ! A . To

check an abstraction situation, one only needs to consider the subsets X

0

of jA j

(but still for all K




-categories A , though).

The notion of functional completeness, as de�ned above, should not be con-

fused with its homonym in duality theory [12], where, say, the boolean algebra

2 is functionally complete because every function 2

n

! 2 corresponds to a

polynomial. In boolean algebras, there are thus enough polynomials to rep-

resent all functions, whereas we are concerned with the situations when there

are enough constants to represent all polynomials. The term polynomial com-

pleteness might be better, but the usage, at least for the cartesian case, seems

completely standard.

2.4 Characterising abstraction

Commutative comonoids and cartesianness. Let N be the full subcategory

of Set

op

spanned by the natural numbers: a morphism m ! n in N is just a

function m n. Since Set is the coproduct completion of 1, Set

op

is the product

completion [14]. The free cartesian category generated by 1 is thus Set

op

�n

, and

9



N is the free strictly cartesian category over 1, with + as the cartesian product

and 0 as the terminal object.



in [7, def. 3.6], categorical in [8, def. 8.1(4)] and [28, def. 4.1]. The following is

closer to the former.

De�nition 2.5 Let C

`

be a graphic operation with the arity

b

1

: `
m

1

! n

1

b

2

: `
m

2

! n

2

� � � b

r

: ` 
m

r

! n

r

C

`

(b

1

; : : : ; b

r

) : `
m �! n

(17)

Given two such, C

k

and C

`

, an arrow u : `! k in A is said to be admissible if

it satis�es

C

`

�

b

1

(u
m

1

); : : : ; b

r

(u
m

r

)

�

= C

k

(b

1

; : : : ; b

r

) � (u
m): (18)

A monoidal functor M ! A is admissible if its image consists of arrows admis-

sible with respect to a given family fC

`

g

`2M

.

Finally, a comonoid k in a K




-category A is admissible if every graphic

operation C 2 K induces a unique family making the monoidal functor N! A :

1 7! k admissible. Such an operation is called k-control.

Each morphism m  n of N decomposes as m  - m

0

' n

0

^ n, where the

�rst and the last components are monotone. It is not hard to see that a monoidal

functor N! A must take every monotone injectionm - m

0

to an arrow derived

from ! and 
, every monotone surjection n

0

^ n to an arrow derived from �

and ! and every bijectionm

0

' n

0

to a composite of the symmetries � . Since the

class of arrows satisfying (18) is clearly closed under the composition, checking

whether N! A is admissible boils down to checking separately the admissibility

of the arrows derived from ! and 
, from � and 
, and from � , 
 and �. These

three parts correspond to conditions 1{3 from [7, def. 3.6].

On the other hand, every tensor power k

j

of a commutative comonoid k

is a commutative comonoid again. Hence the Kleisli categories A

k

j




for all

natural numbers j. The mapping j 7! A

k

j




determines an indexed category

N

op

! Cat, with the reindexing induced by the precomposition. Condition (18)

now appears as the naturality with respect to this reindexing, and a k-control is

just an indexed graph operation on this indexed category. The setting described

in [8, def. 8.1(4)] and [28, def. 4.1] is built upon this idea

2

.

Proposition 2.6 A K




-category A is functionally complete with respect to the

extension by [x;Q] of type k if and only if

(i) k is an admissible commutative comonoid in A , and

(ii) x is an admissible comonoid homomorphism in A [x;Q].

2

However, it seems that these graphic operations as natural transformations must be total

and monotone with respect to the reduction preorder, so that, e.g., currying, or replication

[16] cannot be treated directly.

11



Proof. When A is functionally complete, the commutative comonoid structure

>

!

 k

�

! k 
 k is

! = �x:id

>

(19)

� = �x:x
 x: (20)

Its admissibility is proved as in [7, sec. 4.2].

The fact that x is an admissible comonoid homomorphism from >

id

 >

id

!

>
> follows directly from (5).

The other way around, assume (i) and (ii). The abstraction �x is de�ned

inductively. An arrow of A [



= C

k

�

ad(�x:�

1

); : : :

�

� (x
m)

= C

�

ad(�x:�

1

) � (x
m); : : :

�

= C(�

1

; : : : ; �

r

):

The remaining cases only depend on x being a comonoid homomorphism. The

uniqueness part of 2.2(a) follows by a similar inductive argument. �

Corollary 2.7 (K; Q) is an abstraction situation if and only if

(i) K makes all objects into admissible commutative comonoids, while

(ii) Q makes all names into admissible comonoid homomorphisms.

3 Action calculi and control structures

3.1 Abstraction elimination

De�nition 3.1 A monoidal category where every object has a commutative

comonoid structure is said to be semi-cartesian.

An action category is a K




-category with a distinguished admissible commu-

tative comonoid structure on every object.

A semi-cartesian category is cartesian if and only if each object carries a

unique comonoid structure, and such structures form two natural families, � and

!. The naturality means that all morphisms of the category must be comonoid

homomorphisms.

In action categories, the property





on all x 2 X and all C 2 K.

Proof. � is the smallest set of equations satisfying condition 2.7(ii). A [X; �]

is thus the free functionally complete extension of the action category A by X.

The equivalent conditions of proposition 2.2 are thus satis�ed for every x 2 X.

We show that this setting coincides with the structure of action calculus.

First of all, axiom � trivially implies equation (5). The converse follows from

2.2(c).

Axioms 
 and � follow from the uniqueness part of 2.2(a). The converse uses

the functoriality of ab

x

.

Finally, axiom � corresponds to condition (15), while (14) remains implicit

in the de�nition of a uniform ab

x

in all contexts. �

Control structures [16]. While an action calculus is built up inductively, as

the extension of a given K




-category by names and abstractions, a (static) con-

trol structure is a K




-category readily given with the abstraction functors and

with names as distinguished arrows. The syntactic concepts, such as context,

or substitution, are then reconstructed algebraically.

Corollary 3.4 A K




-category C is a (static) control structure if and only if

it is equivalent with an extension A [X ;Q] of a action category A , with Q � �

(23{25).

Proof. By [16, thm. 4.15], C is a control structure if and only if it is a quo-

tient of an action calculus B [X; ab] along an abstraction preserving K




-functor.

Proposition 3.3 thus yields C as a quotient of B [X; �]. The subcategory A ,

spanned in C by the image of B



Proposition 3.5 Let u : ` ! k be a morphism in an action



no controls. The action calculi, described in [18, 3.1{3.3], are of this kind:

cartesian categories, or their polynomial extensions, supporting the �-calculus.

No controls.

ii. The departure from the cartesian setting is essentially due to introducing

controls. In spite of their diversity, all the original action calculi can be sub-

sumed under a simple syntactic construction, molecular forms [21] | which

actually yields the free extension of a free cartesian category by a given set of

controls. Such extensions turn out to be action categories, of course.

Consider a formal expression (~x)h~yi, where all x

i

from ~x = x

0

� � �x

m�1

are

distinct, whereas each y

j

from of ~y = y

0

� � �y

n�1

occurs in ~x as some x

i

. Setting

f(j) = i whenever y

j

= x

i

,



The �rst and the most basic concrete example is the mentioned category

Rel. Its monoidal structure and the commutative comonoids are induced by the

cartesian structure of Set. But note that these inherited comonoids are not the

only ones in Rel. In general, binary relations ! : k!

j

1 and � : k!

j

k 
 k (i.e.

! � k and � � k � k � k) will form a commutative comonoid if and only if for

every a 2 k holds

!(a) () 8bc:�(a; b; c), a = b = c (26)

:!(a) () 9!b: !(b) ^�(a; a; b)^�(a; b; a): (27)

These nonstandard comonoid structures o�er a choice of nonstandard action

category structures on Rel, with varying notions of name, extension etc. In fact,

the morphisms from m to n in the extension of Rel by any name x : 1!

j

k will

always be the k-indexed families of relations m!

j

n, but the composition and

the identities will vary with the comonoid on k. The reader can work this out

using 2.2(c), or noticing that the name x, as an arrow of the extension, is the

family fx

a

: 1!

j

kg

a2k

, where each x

a

� k is

x

a

(b) () a = b ^ !(a): (28)

Which controls can be added to Rel? In principle, this is a bit like asking

which operations can be added to the signature of a given algebra. For action

categories there is a canonical choice, though. The details will be explained

in [27], but let us here just display the

wi0.0791000.67(suitablf)-13999.6(.4 12 Tdf
85.4402 0 Td
7Rel)Tj
/R61 0.24 Tf
13.4398 0 Td
7) therea



the formulas

!�

o

= ! 
 ! (30)

9' : k!

j

k 8! : k!

j

1:

�

''

o

� id ^ ! \ ! = � =) !�

o

= ('! 
 !) [ (! 
 '!)

�

(31)

which boil down to (26{27) when the classical logic is available.

In general, any allegory [6] or cartesian bicategory [2] subsumes an action

category: the latter structure even contains commutative comonoids as a part

of the de�nition. A range of familiar examples is obtained: categories of semi-

lattices, total orders, total relations, partial maps. . .| they all turn out to

support the name abstraction, with various classes of controls. The basic inter-

action categories [1] also fall into this group; SProc even appears as a category

of relations for a certain regular �bration [26].

At this point, however, it is probably fair to reiterate that these considera-

tions are restricted to the static action calculus. The abundance of the examples

suggests that the presented theory of abstraction is actually too general to re-

ally pin down the intended computational meaning of the full action calculus.

As pointed out before, an essential part remains to be captured by narrow-

ing down the dynamics. It conceptual importance is can be seen, e.g., in the

fact that the intuitive di�erence of interaction categories and action calculi can

only be captured on the level of dynamics, since interaction categories support

the static action calculus, but fail to satisfy the dynamic axioms. In fact, very

few of the mentioned examples, with their natural hom-set orders, satisfy these

axioms. Already in Rel, the identities are neither minimal nor maximal with re-

spect to the inclusion. They are maximal among the partial maps, and minimal

among the total relations, but more subtle dynamic requirements will perhaps

be needed to really capture ideas.

vi. A di�erent class of examples is obtained by generalising Rel as the Kleisli

category for the commutative monad [9] } : Set ! Set. The generalisation is

based on the following lemma (roughly from [29, 4.7]).

Lemma 3.6 A monad T on a monoidal category V is commutative if and only

if the Kleisli category V

T

and the canonical functor V!V

T

are monoidal.

Since a monoidal functor preserves comonoids, V

T

will be an action category

(semi-cartesian) as soon as V is.

According to Moggi [23], many notions of computation are naturally pre-

sented as strong monads on cartesian categories: the objects are sets of values,

and the monad assigns to each of them the corresponding set of computations.

If the base category depicts the maps on values, the induced Kleisli category

can be thought of as the category of computations. The above lemma now im-

plies that such a category of computations is an action category as soon as the

corresponding monad is commutative. And the commutativity in this setting

corresponds to the invariance of the order of execution.

19



This correspondence
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