

late bisimulation congruences, [Hen91] and [BD92] for testing

partition of the condition. Because of this we can use maximally consistent extensions

instead of the phrase \... there exists a partition ..." in the de�nition of symbolic

bisimulation. Another important property of maximal consistency is that it characterises

substitutions upto an injective substitution. That is, two substitutions satisfying the

same maximally consistent condition di�er only by an injective substitution. As ground

bisimulation in the �-calculus is preserved by injective substitutions, the �nite set of

maximally consistent conditions on fn(t; u) captures all the substitutions needed to

close up t

�

� u in order to get t � u.

The rest of the paper is organised as follows: The calculus and its semantics are

introduced in the next section. The inference system is presented in Section 3, along

with the completeness proof. Section 4 discusses extensions to the calculus. Section 5

demonstrates how the theory developed for the late equivalence in the previous sections

can be carried over to the early case. The paper concluded with Section 6 where the

relation with other work are also discussed.

2

pre

�:t

�

�! t

match

t

�

�! t

0

[x = x]t

�

�! t

0

sum

t

�

�! t

0

t+ u

�

�! t

0

par

t

�

�! t

0

t j u

�

�! t

0

j u

bn(�) \ fn(u) = ;

res

t

�

�! t

0

(x)t

�

�! (x)t

0

x 62 n(�) com

t

a(x)

�! t

0

u

ay

�! u

0

t j u

�

�! t

0

[y=x] j u

0

open

t

ax

�! t

0

(x)t

a(x)

�! t

0

a 6= x close

t

a(x)

�! t

0

u

a(x)

�! u

0

t j u

(

Pre

�:t

true;�

�! t

Match

t

M;�

�! t

The elements in a condition are treated as conjuncts. We avoid introducing disjunc-

tion into the theory of conditions. The major advantage is that the relation C) D can

be tested in linear time w.r.t the size of C and D:

Proposition 2.4 The relation C) D is linear time decidable.

Proof: We �rst generate equivalence classes from the equalities in C, along with a list

of pairs of representatives of the equivalence classes such that the pair of representatives

of x and y is in the list if and only if x 6= y is in C. This process takes time linear to the

size of C. Then for each element e of D if e is an equality a = b we check if a; b is in

the same equivalence class; if e is an inequality a 6= b we check if the pair consisting of

their representatives are in the list. 2

Two substitutions � and �

0

are equal on V , written � =

V

�

0

, if x� = x�

0

for all x 2 V .

Two substitutions � and �

0

are elementarily equivalent on V if for any x; y 2 V � j=

x = y if and only if �

0

j= x = y. Clearly equal substitutions are elementarily equivalent.

On the other hand elementarily equivalent substitutions are not necessary equal, though

they do not di�er much, as the following lemma reveals.

Lemma 2.5 Suppose � and �

0

are substitutions on V . If they are elementarily equivalent

on V , then there exists an injective substitution � such that � =

V

�

0

�.

Proof: Let � be the substitution such that (x�)� = x�

0

and (x�

0

)� = x� for all x 2 V ,

and is identity otherwise. � is well de�ned because � and �

0

are elementarily equivalent

on V . Furthermore it is injective and satis�es � =

V

�

0

�. 2

A condition C is consistent if there are no x; y 2 N such that C) x = y and

C) x 6= y. C is maximally consistent on V � N if for any x; y 2 V either C) x = y

or C) x 6= y.

C

0

is a maximally consistent extension of C on V , written C

0

2MCE

V

(C), if C � C

0

and C

0

is maximally consistent on V . The set of maximally consistent extensions of a

given condition on a �nite set of names V is �nite. We will abbreviate MCE

V

(true) as

MC

V

.

Given a condition C, de�ne E

V

(C) = fx = y j x; y 2 V; C 6) x = y and C 6)

x

2. x = y 2 I

�

;

3. x 6= y 2 I.

In each case either D) x = y or D) x 6= y. 2

Corollary 2.7

W

MCE

V

(C) = C

Proof:

W

MCE

V

(C) =

W

fC [I [I j I � E

V

(C) g

= C ^

W

f I [I j I � E

V

(C) g

= C ^ true

= C

2

Corollary 2.7 shows that the set of all consistent extensions of a condition (on a given

name set) constitutes a particular partition, or decomposition of the condition.

Proposition 2.8 C is maximally consistent on V if and only if all substitutions satis-

fying C are elementarily equivalent on V .

Proof: The \only if" part is trivial. For the \if" part, suppose C is not maximally

consistent on V . Then there exist x; y 2 V such that neither C) x = y nor C) x 6= y.

So there exists a substitution � such that � j= C and � j= x 6= y. Let �

0

be the

substitution which is the same as � except that it sends x to y�. Then we still have

�

0

j= C. But �

0

is not elementarily equivalent to � on V because �

0

j= x = y. A

contradiction. 2

Corollary 2.9 Suppose C is maximally consistent on V . If � and �

0

both satisfy C,

then � =

V

�

0

� for some injective substitution �.

In other words, all substitutions satisfying a maximally consistent condition on a given

name set are isomorphic on that name set. This shows the importance of the notion of

maximal consistence: it captures substitutions upto isomorphism. Recalling Lemma 2.2

that isomorphic substitutions make no di�erence as far as bisimulation is concerned, the

set of maximally consistent conditions on fn(t; u) characterises all possible substitutions

that may a�ect the bisimilarity between t and u. Although t � u is de�ned as the closure

of t

�

� u over all substitutions, only �nite number of substitutions need to be checked,

one for each maximally consistent condition on fn(t; u).

2.3 Symbolic Bisimulations

Now we are ready to give the de�nition of symbolic bisimulation.

We write � =

C

� to mean

if � � � then � � �

if � � ax then � � by and C) a = b; C) x = y

if � � a(x) then � � b(x) and C) a = b

if � � a(x) then � � b(x) and C) a = b

7

De�nition 2.10 A condition indexed family of symmetric relations S = fS

C

g is a late

symbolic bisimulation if (t; u) 2 S

C

implies

whenever t

M;�

�! t

0

with bn(�) \ fn(t; u; C) = ;, then for each C

0

2

MCE

fn(t;u)

(C [M) there is a u

N;�

�! u

0

such that C

0

) N; � =

C

0

�,

Proof: 2 and 3 are direct consequences of 1. The \only if" part of 1 can be established

by de�ning

R = f (t�; u�) j t �

AXIOM

true � t = u

t = u is an axiom instance

CHOICE

C � t

i

= u

i

C � t

1

+ t

2

= u

1

+ u

2

L-INPUT

C � t = u

C � a(x):t = b(x):u

C) a = b; x 62 fn(C)

OUTPUT

C � t = u

C � ax:t = by:u

C) a = b; C) x = y

TAU

C � t = u

C � �:t = �:u

MATCH

C [fx = yg � t = u C [fx 6= yg � 0 = u

C � [x = y]t = u

RES

C [fx 6= y j y 2 fn((x)t; (x)u) g � t = u

C � (x)t = (x)u

x 62 n(C)

PARTITION

C [fx = yg � t = u C [fx 6= yg � t = u

C � t = u

CONSEQ

C � t = u

C

0

� t = u

C

0

) C

ABSURD

false � t = u

Figure 3: The Inference Rules for Late Symbolic Bisimulation

As we are working modulo �-equivalence, we also assume the following rule

ALPHA

true � t = u

t and u are � � equivalent

We write ` C � t = u to mean C � t = u can be derived from this inference system.

Proposition 3.1 1. If C)M and ` C � t = u then

S1 X + 0 = X R1 (x)0 = 0

S2 X +X = X R2 (x)�:X = �:(x)X if x 62 n(�)

S3 X + Y = Y +X R3 (x)�:X = 0 if x is the port of �

S4 (X + Y) + Z = X + (Y + Z) R4 (x)(y)X = (y)(x)X

R5 (x)(X + Y) = (x)X + (x)Y

Figure 4: The Axioms for Choice And Restriction

The rule PARTITION permits a case analysis on the name space represented by

a condition: To see if t = u holds over C, we can decompose C into C [fx = yg

and C [fx 6= yg, and exam each separately. In fact, this rule can be generalised to

allow arbitrary decompositions. The following proposition gives the case for a particu-

lar decomposition, i.e. the decomposition of a condition into its maximally consistent

extensions (Corollary 2.7):

Proposition 3.2 If ` D � t = u for each D 2 MCE

V

(C) then ` C � t = u.

Proof: Suppose ` D � t = u for each D 2 MCE

V

(C). By Lemma 2.6

D 2 MCE

V

(C) i� D = C [I [I for some I � E

V

(C). Apply induction on the

cardinality of E

V

(C).

If E

V

(C) is empty then C is the only maximally consistent extension of itself, and

the result is trivial.

Otherwise assume E

V

(C) has n+ 1 elements and let x = y 2 E

V

(C). We have

MCE

V

(C) = MCE

V

(C [fx = yg) [MCE

V

(C [fx 6= yg)

and

E

V

(C [fx = yg) � E

V

(C)� fx = yg

E

V

(C [fx 6= yg) � E

V

(C)� fx = yg

So by induction ` C [fx = yg � t = u; ` C [fx 6= yg � t = u. By PARTITION

` C � t = u. 2

The following proposition summarises the interaction between the restriction and

match operators.

Proposition 3.3 1. ` (x

andC(

Theorem 3.4 (Soundness of `) If ` C � t = u then t �

C

L

u.

The rest of this section is devoted to the proof of completeness result for `.

The height of a term t is de�ned inductively thus

� j 0 j = 0

� j t+ u j = maxfj t j; j u jg

� j [x = y]t j = j t j

� j (x)t j = j t j

� j �:t j = 1 + j t j

If a 6= x then we abbreviate (x)ax:t as a(x):t. a(x) is a derived action and is called

bound output.

Proposition 3.5 Suppose C) a = b; x 62 n(C). If ` C [fx 6= y j y 2

fn(a(x):t; b(x):u) g � t = u then ` C � a(x):t = b(x):u.

Proof: Since ` C [fx 6= y j y 2 fn(a(x):t; b(x):u) g � t = u and C) a = b, by

OUTPUT we get ` C [fx 6= y j y 2 fn(

Proof:

Let t �

P

i

M

i

�

i

:t

i

and u �

P

j

N

j

�

j

:u

j

with bn(�

i

)\fn(u) = bn(�

j

)\fn(t) = ;. Then

t j u =

X

i

M

i

�

i

:(t

i

j u) +

X

j

N

j

�

j

:(t j u

j

) +

X

�

i

opp �

j

M

i

N

j

[a

i

= b

j

]�:v

ij

where �

i

opp �

j

and v

ij

are de�ned as follows

1. �

i

� a(x); �

j

� by; then v

ij

� t

i

[y=x] j u

j

;

2. The converse of the above clause;

3. �

i

� a(x); �

j

� b(y); then v

ij

� (z)(t

i

[z=x] j u

j

[z=y]) with z 62 fn(t; u);

4. The converse of the above clause.

Figure 5: The Expansion Law

the calculus with mismatch in order to give axiomatisations for testing or bisimulation

equivalences.

To include mismatch into the language we �rst extend the operational semantics by

including the following two rules: \mismatch" and \Mismatch" in Figure 1 and Figure 2,

respectively (now M ranges over conditions)

mismatch

t

�

�! t

0

[x 6= y]t

�

�! t

0

x

Early symbolic bisimulation is obtained by separating the clause for input transition

from other cases in De�nition 2.10:

whenever t

M;a(x)

�!

L

t

0

with x 62 fn(t; u; C), then for each C

0

2

MCE

fn(t;u)[fxg

(C [M) there is a u

N;b(x)

�!

where J

0

= f j 2 J j D) N

j

g. Hence, from the assumption we can derive

`

E

C �

X

i2I

0

M

i

�:t

i

=

X

j2J

0

N

j

�:u

j

As a further research topic we would like to

but also equalities. By such mild generalisation, direct characterisations of both late

and early bisimulation equivalences for the �-calculus become possible and sound and

complete proof systems can be formulated, as demonstrated by our results presented

here. It is also interesting to characterise open bisimulation using our symbolic approach.

Such a characterisation could facilitate the comparisons between open, late and early

bisimulations, as they are expressed within the same framework.

References

[BD92] M. Boreale and R. DeNicola. Testing equivalence for mobile processes. In

CONCUR'92, number 630 in Lecture Notes in Computer Science, pages 2 {

