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Abstra
t

What is neuronal 
apability of dis
riminating between di�erent input signals? Fur-

thermore, how to improve its dis
riminating 
apability? We explore these issues both

theoreti
ally and numeri
ally for the integrate-and-�re (IF) model and the IF-FHN

model (a simpli�ed version of the FitzHugh-Nagumo model [6℄). It is found that adding


orrelations and in
reasing inhibitory inputs 
onsiderably redu
e the total probability

of mis
lassi�
ations (TPM). A novel theory on dis
rimination tasks is developed and

the theory a

ounts for all observed numeri
al results.

1 Introdu
tion

To eÆ
iently dis
riminate between di�erent input signals, for example to tell the im-

age of a prey from that of a predator, is of vital importan
e to a nervous system. The

a
tual

fro
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that the information extra
ted from single neuron a
tivity in MT is almost enough to

a

ount for psy
hophysi
al experiment data. Hen
e an observation of the �ring rates

of single neuron, at least in MT, 
ontains enough information to further guide motor

a
tivity. Imagining the enormous number of neurons in the 
ortex, their �ndings are

striking and open up many interesting issues for further theoreti
al and experimental

study. Interestingly, similar �ndings are reported in somatosensory pathways [15℄ as

well. In line with these experimental results, in this paper we 
on
entrate on the rela-

tionship of the input and output �ring rates of a single neuron. The issue we are going

to address is quite straightforward (see Fig. 1). Suppose that a neuron re
eives two set

Figure 1: For two mixed signals (left), afterrela-psy
u3203 Td
1oInsI4d.0398 t
illtheymore

mixed or more separated?

of signals (
oded by �ring rates) distributed a

ording to two histogramsdepi
ted

in Fig. 1 (left). Will the signals be
ome more mixed or
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�re(IF) model and the IF-FHN
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Theoreti
ally the 
riti
al value of the 
oherent inputs at whi
h the output his-

tograms are separable is exa
tly obtained (Theorem 2) for the 
ase of 
orrelated and

exa
tly balan
ed inputs (the most interesting 
ase). The results enable us to assess the

dependen
e of our 
on
lusions on di�erent model parameters and input signals. It is

illuminating to see that the 
riti
al value is independent of model parameters in
luding

the threshold, the de
ay time and the EPSP and IPSP magnitude.

All the aforementioned results are obtained for the IF and IF-FHN model without

reversal potentials, we further examine our 
on
lusions for the IF model with reversal

potentials. Sin
e adding reversal potentials to a model is equivalent to in
reasing its

de
ay rate (depending on input signals), we would naturally expe
t that the model

with reversal potentials will be
ome more e�e
tively to distinguish di�erent inputs.

The 
on
lusion is numeri
ally 
on�rmed.

During the past few years, inhibitory inputs (see for example [11, 12℄) and 
orrelated

inputs (see for example [17, 18℄ are two topi
s widely investigated in neuros
ien
e. It

seems it is generally a

epted that they play important roles in information pro
essing

in the brain. Our results here provide a 
onvin
ing and dire
t eviden
e to show that

they do improve the performan
e of a single neuron. Su
h results would also be valuable

on pra
ti
al appli
ations of spiking neural networks [9℄.

2 The Integrate-and-�re Model and its Inputs

The �rst neuron model we use here is the 
lassi
al Td
[(most)Tj
23.g4d84tionsis
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with E

i
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orrelation 
oeÆ
ient between ith ex
itatory (inhibitory) synapse and jth ex
itatory

(inhibitory) synapse is 
 > 0. The 
orrelation 
onsidered here re
e
ts the 
orrelation

of a
tivity of di�erent synapses, as dis
ussed and explored in [6, 21℄. It is not the


orrelation of single in
oming EPSP or IPSP whi
h 
ould be expressed as 


ij

(t� t

0

) for

the EPSP (IPSP) at time t of the ith synapse and time t

0

of the jth synapse. We refer

the reader to [6℄ for a detailed dis
ussion on the meaning of the 
orrelation 
onsidered

here.

In summary, suppose that a neuron re
eives p synapti
 inputs. The goal of the

postsynapti
 neuron is to dis
riminate between two types of inputs

1. p

c

ex
itatory
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dire
tion of a dot. Denote that N

i

(t); i = 1; � � � ; p as a Poisson pro
ess with a rate �

i

,

where �

i

takes value from [0; 100℄Hz, i.e. (�

i

=
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about 13:5% and for the right upper panel is 5:5%. Therefore adding inhibitory inputs

to the neuron 
onsiderably improves its dis
rimination 
apability, redu
ing TPM from

13:5% to 5:5%.

In Fig. 4 the histogram of 
oeÆ
ient of variation (CV) of e�erent spike trains is

plotted. Our results also reveal one possible fun
tional role of e�erent spike trains with

a high CV widely observed in experiments. In the past few years, there are a large body

of literatures devoted to the topi
: how to generate e�erent spike trains with a large

CV for the IF model(see [6℄ for a review). Nevertheless, the fun
tional impli
ations of

e�erent spike trains with a large CV are still not 
lear. Here we �nd that for a �xed


oheren
e level, a lower TPM value 
orresponds to a larger
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than harmful. The bene�t of noise in neuronal system has been extensively explored

in the literature of sto
hasti
 resonan
e [8℄. However, the me
hanism to rea
h the

�nely tuning noise level whi
h results in the sto
hasti
 resonan
e seems far-fet
hed for

neuronal systems. Our �nding here provides a more dire
t and 
onvin
ing eviden
e

whi
h 
learly demonstrates the advantage of adding noise to a neuronal system.
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Figure 5: TPM % vs. r (left) and TPM vs. p

c

(right) for the IF model. When p

c

= 15 (left),

it is 
learly shown that TPM attains its optimal value at r = 1,
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To the �rst order approximation, Eq. (3.4) reveals the underpinning me
hanism of

the phenomena observed here. From Eq. (3.4) we have

hT i � hT

1

i =

2g(0)V

thre

a

q

[�

j

p

c

(1 + 
(p

c

� 1)) + (p� p

c

)h�

1

i+

p

p� p

c

��(�

1

)℄(1 + r)

(3.5)

The �ring rate in the unit of Hz is then

1000

R

e

+ hT

1

i

=

1000a

q

[�

j

j

j

j
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�(�

1

) = :1=

p

12 (upper panel) and �(�

1

) = 1=

p

12 (bottom panel). When h�

1

i = 0:05

and �(�

1

) = :1=

p

12, the mean and varian
e are the same as in the model 
onsidered in

the previous subse
tions. When h�

1

i = 0:05 and �(�

1

) = 1=

p

12, the standard deviation

of inputs is enlarged by a fa
tor of 10, in 
omparison with the setup in the previous

subse
tions. It is easily seen that in
reasing the varian
e in input signals will make the

histograms of �ring rates more widely spread out, as shown in Fig. 6, bottom panel.

Nevertheless, when p

c

= 25 we see that the input signals 
an be perfe
tly separated.

3.2 Models With Reversal Potentials

A slightly more general model than the IF model de�ned above is the IF model with

reversal potentials de�ned by

dZ

t

= �(Z

t

� V

rest

)Ldt+ d

�

I

syn

(Z

t

; t) (3.9)

where

�

I

syn

(Z

t

; t) = �a(V

E

� Z

t

)

p

X

i=1

E

i

(t) +

�

b(V

I

� Z

t

)

q

X

j=1

I

j

(t)

V

E

and V

I

are the reversal potentials V

I

< V

rest

< V

E

, �a(V

E

� V

rest

);

�

b(V

I

� V

rest

) are

the magnitude of single EPSP and IPSP when Z

t

= V

rest

. We 
ould rewrite Eq. (3.9)

in the following form

dZ

t

= �(Z

t

� V

rest

)(Ldt+ �a

p

X

i=1

dE

i

(t) + �a

p

X

i=1

dI

i

(t))

+�a(V

E

� V

rest

)

p

X

i=1

dE

i

(t) +

�

b(V

I

� V

rest

)

q

X

j=1

dI

j

(t)

= �(Z

t

� V

rest

)[Ldt+ �a

p

X

i=1

dE

i

(t) +

�

b

p

X

i=1

dI

i

(t)℄

+a

p

X

i=1

dE

i

(t) + b

q

X

j=1

dI

j

(t)

(3.10)

Therefore the di�eren
e between the model with and without reversal potentials is that

the latter has a de
ay rate depending on in
oming signals. From
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the previous subse
tions we would expe
t that the model with reversal potentials will

improve its 
apa
ity of dis
riminating in
oming signals.

Fig. 7 is in agreement with our expe
tations. We see that for p

c

= 15 and

r = 0:6 a perfe
t dis
rimination is a
hieved. For the model without reversal po-

tentials, we see that for p

c

= 15 and r = 1 we still have TPM > 0 (see pre-

vious subse
tions). The parameters used in the model with reversal potentials are

�a = 0:01;

�

b = 0:1; V

E

= 100mV; V

I

= �10mV , with all other parameters as the model

without reversal potentials.
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Figure 7: Histogram of �ring rates in the unit of Hz ( upper panel) and CV (bottom panel)

with 
 = 0:1; p

c

= 15 for the IF model with reversal potentials. Left, ex
lusively ex
itatory

inputs r = 0. Right, r = 0:6.



16

3.3 IF-FHN Model

The IF model is the simplest neuron model whi
h mimi
s 
ertain properties of a bi-

ologi
al neuron and is linear before resetting. A slightly more 
omplex model is the

IF-FHN model, an IF model but with a nonlinear leakage 
oeÆ
ient, as in a biophysi
al

model. In terms of the output signal-to-noise ratio, we know that the IF and IF-FHN

model behave in totally opposite ways when they re
eive 
orrelated inputs (see [6℄ for a
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dis
rimination 
apability of the model neuron. Furthermore, the fra
tion of 
oherent

inputs whi
h ensures a perfe
t dis
rimination is less than that of the IF model. For

example, in Fig. 8, with p

c

=p = 25=300 of 
oherent inputs the histograms of e�erent

frequen
y are well separated when r = 1.

4
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and denote

�(�

1

; �

2

; 
; r) = fp

c

: R

min

(�

2

) = R

max

(�

1

)g (4.1)

If it is 
lear from the 
ontext about the dependen
e of �(�

1

; �

2

; 
; r) on 
; r, we some-

times simply write �(�

1

; �

2

; 
; r) as �(�

1

; �

2

). Hen
e for �xed (�

1

; �

2

), �(�

1

; �

2

) gives

us the 
riti
al value of p

c

: when p

c

> �(�

1

; �

2

) the input patterns are perfe
tly separa-

ble in the sense that the the output �ring rate histograms are not mixed with TPM=0;

when p

c

<
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Hen
e the derivative of the se
ond term in Eq. (4.6) is

2

L

�

Z

V

thre

L

0

g

0

0

�

y � a[p

c

�

j

+ x℄(1 � r)

a

q

[�

j

p

c

(1 + 
(p

c

� 1)) + x℄(1 + r)

1

A

�

�2a(1� r)[�

j

p

c

(1 + 
(p

c

� 1)) + x℄(1 + r)� (y � a[p

c

�

j

+ x℄(1� r)(1 + r)

2a(

q

[�

j

p

c

(1 + 
(p

c

� 1)) + x℄(1 + r))

3

dy

� g

j

p x℄(1 r



22

� The output �ring rate is an in
reasing fun
tion of inputs

� Input �ring rate is 
on�ned within a �nite region, whi
h is of 
ourse the 
ase in

neuros
ien
e

we simplify our task from �nding out the varian
e of hT i to solving an algebra equation

de�ned in Theorem 1. Theorem 1 is the starting point of all following results.

Theorem 2 When 
 = 0 we have

�(�

1

; �

2

; 0; r) =

p�

max

�

2

� �

1

+ �

max

independent of r. When 
 > 0 we have

�(�

1

; �

2

; 
; r

2

) < �(�

1

; �

2

; 
; r

1

) < �(�

1

; �

2

; 0; r) (4.10)

where 1 � r

2

> r

1

> 0 and furthermore

�(�

1

; �

2

; 
; 1) =

p

[(�

2

� �

1

)(1� 
) + �

max

℄

2

+ 4p�

max


(�

2

� �

1

)� (�

2

� �

1

)(1� 
)� �

max

2
(�

2

� �

1

)

(4.11)

Before proving the 
on
lusions, we �rst dis
uss the meaning of Theorem 2. The

�rst 
on
lusion tells us that with 
 = 0, no matter how strong the inhibitory inputs

are, the 
riti
al value of p

c

is independent of r. In other words, without 
orrelated

inputs, in
reasing inhibitory inputs does not enhan
e the dis
rimination 
apa
ity of

the neuron. In Theorem 3 below, we will further prove that without 
orrelated inputs,

if the inputs are separable, so are the outputs and vise versa. The se
ond 
on
lusion

says that the dis
rimination 
apa
ity of the neuron is improved if the neuron re
eived


orrelated inputs. With 
orrelated inputs, in
reasing inhibitory inputs does enhan
e

the dis
rimination 
apa
ity of the neuron. In parti
ular, we see that for a �xed 
 > 0,

the optimal dis
rimination 
apa
ity is attained when r = 1. Hen
e Theorem 2 
on�rms

our numeri
al results on the IF model presented in the previous se
tion.
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p

c

�

2

+

P

p�p




i=1

�

i

. De�ne

R

i

min

(�

2

) = minf�; p

i

2

(�) > 0g

and

R

i

max

(�

1

) = maxf�; p

i

1

(�) > 0g

Then the relationship between R

i

min

(�

2

)�R

i

max

(�

1

) and R

min

(�

2

)�R

max

(�

1

) 
hara
-

terizes the input-output relationship of neuron signal transformations.

We �rst want to assess that whether R

min

(�

2

)�R

max

(�

1

) > 0 even when R

i

min

(�

2

)�

R

i

max

(�

1

) < 0, i.e. the input signal is mixed, but the output signal is separated. In Fig.

12, we plot R

min

(�

2

)�R

max

(�

1

) vs R

i

min

(�

2

)�R

i

max

(�

1

) = �

2

p

c

��

1

p

c

��

max

(p�p

c

),

whi
h is a fun
tion of p

c

. It is easily seen that after neuronal transformation, mixed

signals are better separated when 
 > 0. For example, when 
 = 0:1; r = 1 and

R

i

min

(�

2

)�R

i

max

(�

1

) = �5000 Hz (mixed), but R

min

(�

2

)�R

max

(�

1

) > 0 (separated).

The 
on
lusion is not true for 
 = 0, but the separation is not worse after neuronal

transformation.
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1

) whi
h is a fun
tion of p

c
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 = 0
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Theorem 3 If 
 > 0 we have

R

min

(�

2

)�R

max

(�

1

) > 0 when R

i

min

(�

2

)�R

i

max

(�

1

) = 0

Proof A

ording to the de�nition of R

i

min

(�

2

) and R

i

max

(�

1

) we have R

i

min

(�

2

) = p

c

�

2

and R

i

max

(�

1

) = p

c

�

1

+ �

max

(p� p

c

). From the proof of Theorem 1 we 
on
lude that

R

min

(�

2

)�R

max

(�

1

) = 0 when R

i

min

(�

2

)�R

i

max

(�

1

) = 0

if 
 = 0. For 
 > 0, it is readily seen that R

min

(�

2

)�R

max

(�

1

) > 0 if and only if

Z

V

thre

L

0

"

g

 

y � a[p

c

�

1

+ (p� p

c

)�

max

℄(1 � r)

a

p

[�

1

p

c

(1 + 
(p

c

� 1)) + (p� p

c

)�

max

℄(1 + r)

!

�

p

[�

1

p

c

(1 + 
(p

c

� 1)) + (p� p

c

)�

max

℄

p

[�

2

p

c

(1 + 
(p

c

� 1))℄

� g

 

y � a[p

c

�

2

℄(1 � r)

a

p

[�

2

p

c

(1 + 
(p

c

� 1))℄(1 + r)

!#

dy

(4.17)

is greater than zero. Sin
e p

c

�

2

= p

c

�

1

+ �

max

(p � p

c

) we 
an rewrite Eq. (4.17) as

follows

Z

V

thre

L

0

"

g

 

y � a[p

c

�

2

℄(1� r)

a

p

[�

1

p

c


(p

c

� 1)) + p

c

�

2

℄(1 + r)

!

�

p

[�

1

p

c


(p

c

� 1)) + �

2

p

c

℄

p

[�

2

p

c

(1 + 
(p

c

� 1))℄

� g

 

y � a[p

c

�

2

℄(1 � r)

a

p

[�

2

p

c

(1 + 
(p

c

� 1))℄(1 + r)

!#

dy

(4.18)

Again from the proof of Theorem 1 we know that g is an in
reasing fun
tion, by noting

p

[�

1

p

c


(p

c

� 1)) + p

c

�

2

℄ <

p

[�

2

p

c

(1 + 
(p

c

� 1))℄ we 
on
lude that Eq. (4.18)> 0.

Furthermore, the output di�eren
e of �ring rates is an in
reasing fun
tion of p

c

,

this, together with the 
on
lusions above, also implies the remaining results of Theorem

2.

Theorem 3 reveals one of the interesting properties of neuronal transformation.

Under the assumptionoutp0sthethe outp.12 Tf
7.2sign00.5mplies
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5 Dis
ussion

We have 
onsidered the problem of dis
riminating between input signals in terms of

an observation of e�erent spike trains of single neuron. We have demonstrated, both

theoreti
ally and numeri
ally, that two key me
hanisms to enhan
e the dis
rimination


apability of the model neuron is to in
rease inhibitory inputs and 
orrelated inputs.

In [10℄, the authors have theoreti
ally 
onsidered dis
rimination tasks as well. Never-

theless, our approa
h is very di�erent from theirs. We have 
on
entrated on neuronal

me
hanisms, but their results are more or less a dire
t appli
ation of results in statisti
s.

There are many issues to be further explored in the future.

� We have only 
onsidered to a

omplish the dis
riminating task and have not

in
luded time 
onstrains. De�nitely it is of vital importan
e for a neuronal system

to tell one signal from the other within a time window as short as possible.

� We have tested our model with stati
 inputs. It is an interesting question to

generalize our results here to time-varying inputs as reported in [15℄. Su
h a study

might be helpful to 
larify the ongoing debate on the advantages of 'dynami
al

stimuli' over the 'stati
 stimuli'.

� The input signal used here is very naive. To transform the image of moving

dots to input signals spe
i�ed in the present paper requires a neural network to

prepro
ess the image. Hen
e to devise a network model (spiking neural networks

or Rei
hardt dete
tor [3℄) to reprodu
e our results is one of our ongoing resear
h

topi
s. We expe
t that su
h a study 
ould provide us with a template to 
ompare
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Dis
riminating between di�erent input signals is probably more fundamental 
on-

strains on the neural system than others su
h as maximizing input-output information

or redundan
y redu
tions, a view re
ently e
hoed in [1℄. To understand it will reveal

prin
iples employed by neuronal systems whi
h remain mysterious to us. The issue

dis
ussed here is 
urrently a hot topi
 in neuros
ien
e (for example see [13℄). Our ap-

proa
h provides us with a solid theoreti
al foundation for further study and we expe
t

that our approa
h also opens up many interesting questions to be further investigated

in the future.
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