A Model for the m- Calculus *

M. Hennessy
University of Sussex

Abstract

We develop a semantic theory based on testing for a minor variant of the
m-calculus. The resulting semantic equivalence can be characterised using of ac-
ceptance sets and can also be characterised as an equational theory. We define a
class of interpretations for the w-calculus and construct one which is

1 Introduction

In [MPW92a], [MPWO92b], a calculus of mobile processes, the m-calculus, is presented.
The first reference is an introduction to the calculus and the second develops a semantic
theory based on bisimulations, [Mil89]. The 7-calculus is an extension of the process

algebra

where it is written as ¢ \ z. In fact it is with this operator that the communication of
private channels may be represented in the language. Unlike the original 7-calculus we
use an if ... then ... else ... statement. The process if be thent else u acts like ¢ if the
boolean expression be is true and like u otherwise. We allow a very simple language of
boolean expressions. Essentially it allows the testing of identity between channel names.
Finally we have recursive definitions; intuitively the process rec X. t is equivalent to a
process X where X has been defined by the equation X = ¢t. We use ¥ to denote the
set of operators {nil,Q, (x), Ty, +, P, |}, i.e. all the operators except prefixing by input
actions; the interpretation of this last operator will require special attention.

As usual rec acts like a binder for process variables and we have an appropriate

Input z(v v [n((y)p)
2(y).p 23 plo/y}
Output — _fy
Ty.p —p
a /
Sum LV
p+tq—p
a !
Par P T) p/ bn(a)N fn(q) =10
plg—171|q
p—p
Res = n(a
W)p—)y 7 nla)
p 5y
Open CO y#x and v ¢ fn((y)p')
(y).p — p'{v/y}
" p—ps [be] = tt

if be then p else ¢ — p/

¢ — ¢, [be] =1
if be then p else ¢ — ¢’

Figure 1: Rules for external actions

In the remainder of this section we develop some technical results about this transition
system and it may be skipped by the reader uninterested in technical details. Most of the
proofs are omitted as they are rather tedious and usually proceed by syntactic analysis.
The first two results are taken directly from [MPW92b] and the proofs can be transferred
directly to our language.

Lemma 2.1 Ifp = p' then fn(p') C fn(p) and if p = p then fn(p') C fn(p)Ubn(a)
and fn(a) C fn(p) O

Definition 2.2 We use the phrase
if p = p' then equally ¢ = ¢

to mean that if p —— p’ may be inferred from the transition rules then ¢ - ¢’ may also
be inferred, with an inference of no greater depth. We use a similar notation for internal
arrows. 0

Lemma 2.3 Suppose that p) p' where a« = x or o = T and that z & n(p). Then
equally p) p" for some p" such that p" =, p'{z/y}. O

N 0—a
Rec -
rec X. t = t[recX. t/ X]
/
Choice L}?/
pPg—p
pi>—>p’.
0 : for op € {+,],
P ol) = o) p e {+], ()}
Ty z(z)
Com p—p, ¢—>¢q
pla—p | d{y/=}
Z(w) e(w)
Close p—p, ¢g—¢q
plag— (w)p'[q)
/ JR—
If p—p, [be] =t

if be then p else ¢ > p'
q— ¢, [be] =Jff
if be then p else ¢ > ¢

Figure 2: Rules for internal transitions

In the operational semantics bound names are liberally renamed and it is important
to establish that a-conversion does not seriously affect the behavioural properties of
processes. The next series of results have this in mind. In the next section a new kind of
action, a free input action, will be seen to be important and therefore these results will

z(y)

be also established for these actions. Recall that p — p’ means that y is acting as a
reference in p’ to where names which are received by p are placed. This is actually how
it is used in the rule Com of Figure 2. So it is natural to define a free input action by

p —L p'{y/z} wheneveri fp

then u must be of the form T(z).v’ for some z such that s =, v'{y/z}. We will make
frequent use of the notion of a harmless action or sequence of actions. In a particular
statement a sequence of actions is considered harmless if the bound variables are different
than any of the variables appearing in the rest of the statement. This definition is of

coursethe

Proof: Once more both results are proved simultaneously by induction on the length
of the derivations. Note that in i) it is sufficient to sim

Lemma 2.8 For any a,p the set D(p,a) is finite.

Proof: The proot is straightforward by structural induction on p. Note that if p has
the form rec X. t then this set is empty for every a. a

Of course a process may

3 Testing Processes

Given the operational semantics of the previous section we may now apply the standard
theory of testing as developed in [Hen88]. To this end we assume a special name called
w which is used to denote success. A test or experiment is then simply a process which
may use this extra name and applying a test e to a process p consists in running the
process e | p to completion. A computation from e | p is a complete sequence of the form

elp=so 81— ... s ...

i.e. it is either infinite or if s,, is the last element there must be no s’ such that s, =—— s’

.) . w(x)
Such a computation is successful if some s; can report success, i. e. sp — for any name
z. We often write this as s; € Succ. Then we write

p must e
if every computation from p | e is successful. Finally we say
Pk g

if for every experiment e, p must ¢ implies ¢

Definition 3.1 For every sequence s € RAct
1. let | s be defined by

e p | e if there is no infinite internal computation from p, i.e. no infinite com-
putation of the form p =— p; =— ... == pp =

e p | a.sifp| and for every p’ such that p == p' p' | s.

2. let p |} s if for every s’ such that s =, s" p | §.

To prove that the latter is preserved by a-conversion we need a lemma.
Lemma 3.2 For every process p

1. po | implies p |

2. if o is injective on fn(p) then p | implies po |

3. p=,q and p | implies q |.

Proof: As an example we prove the second statement. Suppose
PO =T = .. Ty ...

is an infinite sequence. By Lemma 2.5 p >— p; such that pjo =, r; and by Proposi-
tion 2.7, part (3), pro =— 14 such that ry =, r}. Again by Lemma 2.5 p; =— py such
that pyo =, ry. Continuing in this way we obtain an infinite internal computation from

p. O

As a corollary we have

Proposition 3.3

1. If p=,q and p | s then ¢ || s.
2. if o is injective on fn(p) then p | s implies po |} o(s)

3. if po |} §' then for every o' and s such that po =, po’ and o'(s) =, ', p{ s.

Proof: The first statement directly from the previous lemma and the results at the end
of the previous section. For suppose p | s, i. e. for some plreﬁX s" of some s” such that
5 =4 8" p == p’ such that p 1. So by Proposition 2.7 ¢ L ¢’ for some ¢ and s} such
that s’ =, s| and ¢’ =, p'{bn(s")/bn(s)}. Since p’ T it follows from the previous lemma
that p'{bn(s")/bn(s)} T and therefore that ¢’ T. This in turn implies that ¢ 1 s.

We leave the second statement to the reader and concentrate on the last. Suppose
p1{ s, i. e. p = p’ where p T for some prefix u of s. By Proposition 2.7 this means that

po’ = r for some r and ' such that r =, po'lbn(u) — bn(u')] and v’ =, o'(u). From

12

the previous lemma this means that r T and therefore po’ {} v, i. e. po’ {} s'. Applying
clause (1) we obtain po { s. O

In fact in order to establish that a process is convergent with respect to all sequences
which are a-equivalent to s it is sufficient to establish it for a sequence whose bound
variables are new, i.e. a harmless sequence.

Lemma 3.4 Ifbn(s)N fn(p) =0 then pl} s if and only if p | s.

Proof:

e for some harmless s’ such that s =, s/, (i. e. bn(s") N (frn(p) U frn(q)) = 0),
Alp, ') < Alg, &)

First we show that this preorder is preserved by a-conversion.

Proposition 3.8 Ifp =, q then p < q.

Proof: From Proposition 3.3 we know that that p =, ¢ and p {} s implies ¢ {} s and
the result therefore follows by the preceding lemma. a

Proposition 3.10 If p < ¢ then p & ¢.

Proof: The proof has the same structure as that for the corresponding result in [Hen88],
Lemma 4.4.13, although the details are more complicated because of the different forms
of communication allowed in the w-calculus. Suppose p < ¢ and p must e. We show
g must ¢ by examining an arbitrary computation from e | ¢ :

e|q:r0>—>r1>—>...>—>rk>—>... (*)

and proving that there is some e, such that e, € Succ. The proot depends on whether
the computation (*) is finite or infinite. As an example we consider only the finite case.
So we may assume that r; is stable for some k. Each r; is of the form (v;)r; where
the individual restricted names in the sequence v, arise because of the possible use of
the Close rule from the operational semantics. Nevertheless by concentrating on the
interaction between the two processes the computation (%) may be unzipped into two
derivations from e, ¢ respectively, which use only actions from Act and which show their
individual contributions: ~ ~

e=ep = ... = e,
and

q:qoé...qj...%qm.

These are such that for each j there exists an 7 such that v} = ¢; | ¢; and if a; = x(v),@; =
Z(v) then r,_y >— r; is inferred using an instance of the rule Close. If on the other hand
it is inferred using an instance of the rule Com then if a; =~

one involving a harmless subsequence and combine this with a corresponding derivation
from e to obtain an unsuccessful computation from e | p.

When the computation (x) is infinite the only possibility we have not touched on is when
the unzipped derivations are infinite and p converges on all subsequences. Here we make
use of Corollary 2.10 which states that the computation trees from p and ¢ are finite
branching, modulo a-conversion. The details of how this is used may be found in Lemma

4.4.13 from [Hen88]. O

To prove the converse we need to define two sets of special tests one of which tests
for convergence and the other which is capable of testing for the contents of A(p, s). The
crucial point is to be able to distinguish between outputing a free name on a channel
and outputing an internal link. To achieve this we use the fact that if a process outputs
a free name this name must belong to the free names of the process. We first examine
convergence.

Let X be a finite set of names. For each s in

1. The rule Com is used in the derivation. B
Then r has the form p' | ify € X then w else ... where p —% p'. This means that
y € fn(p) € X and therefore ry/suce.

2. The rule Close is used in the derivation.
Here r has the form

()" | (ify € X then w else e(s'{z/y})xury Hy/z})

for some new name z, where p 26 p'. If y € X then this term is obviously
in /suce. If not we know that p’ || s" because p | s and since fn(p') € X U
{y} we may apply induction to obtain that p’ | c(s')xugyv/succ. But by the

previous lemma ¢(s')xupy =ao c(s'{z/y})xui3){y/z} and therefore c(s')xugy) |
P =a c(s'{z/y})xup){y/=} | P'. It now follows that ry/succ.

Conversely suppose p | ¢(s)x+/suce. Obviously p | and to show p | s it is sufficient
to prove that if p Lﬁ; p’ then p || s'. Now it may not be possible for ¢(s)x to perform

Z(y) because y may be in X. So pick a completely new v. Then p Z) p{v/y} and
p | c(s)x =— r where up to a-conversion we may take r to be

(v)p'{v/y} | ifv e X thenw else c(s'{v/y})xu) -

Moreover we know that ry/suce and therefore that p'{v/y} | ¢(s'{v/y})xurn/suce. By
induction this means p'{v/y} | s'{v/y}). The simple substitution {y/v} is injective on

fn(p’) and so we may apply Proposition 3.3 to conclude p'{v/y}{y/v} | s{v/y}{y/v},
ie p | g, O

We next design a test e(s, B)x, where s € RAct” and B a finite subset of N with the
property that whenever p || s and fn(p) C X

p must e(s, B)x < VA€ A(p,s) BN A#{.

Note that the right hand side is trivially satisfied if A(p,s) = 0. First let e(z), e(T)
denote the tests Ty.oy.nil, x(y).0y.nil respectively, for any name y. Then we define
e(s, B)x by induction on s:

Loe(e,B)x = X{ely) |y € B}
2. e(zy.s,B)x = Lw+Ty.e(s, B)xuqy
3. e(Ty.s, B)x = Lw + x(2). if z = y then ¢(s, B)x else w where z is a new name

4. e(T(y).s,B)x = Law + 2(2). if z € X then w else e(s{z/y}, B)xu:y where 2 is a

new name.
Proposition 3.13 Ifp | s and fn(p) C X then

p must e(s, B)x < VA€ A(p,s) BN A#{.

17

Proof: The proof is by induction on s and again we examine only one case, when s has
!

the form Z(y).s
First suppose that p | e(s, B)x+/succ and A € A(p,s). We must show that BNA £ ().

We know that p 90:“@ P’ = p' for some stable p’ such that A = Subj(p'). Because y
may appear free in the test e(s.B)x we may not be able to use y in a communication
between the process and the test. So choose a new v and by Proposition 2.7 we have,

up to a-conversion, p =) p{v/y} sLly) p{v/y}. Moreover by Lemmas 2.4 and 2.5 and
Proposition 2.6 it follows that A{v/y} = Subj(p'{v/y}). Because v is new we now have
that, again up to a-conversion,

ple(s,B)x =" (v)p"{v/y} | ifv e X thenw else e(s'{v/y}, B{v/y})xup) -

Here we have used an analogue to Lemma 3.11 for the tests, namely that (e(s, B)x)o =,
e(o(s), Bo)x,. From this it follows that p”{v/y} | e(s'{v/y}, B{v/y})xu{y)V/suce. So
by induction A’ N B{v/y} # 0 for every A" € A(p"{v/y},s'{v/y}). One such A’ is
A{v/y} and so AN B #), because v is new.

Conversely suppose that for all A € A(p,s) AN B # (. We show that
p | e(s, B)x+/suce. We know that p | and the proof proceeds by induction on this fact.
Suppose p | e(s, B)x = r. We must show that ry/succ. If this move is because of an
internal move of either the process or the test we can apply induction or else the result
follows trivially by the construction of the tests. So we need only consider the case when
there is communication between the process and the test. We consider the case when
this is because of an application of the rule Close. The other possibility, when the rule
Com is used, is left to the reader. Then r must have the form

(v)(p'| ifv € X then w else e(s'{v/y},B{v/y})XU{v})

up to a-conversion, where p —5 p'. It is sufficient to consider the case when v is not

in X when effectively any continuing computation is from p’ | e(s'{v/y}, B{v/y})xu{0}-
So the result will follow by induction if we can show that for every A" € A(p/, s'{v/y})
A'NB{v/y} # 0. One can show that any such A’ has the form A{v/y} where A € A(p, s).
Since AN B # () this implies A’ N B{v/y} # 0. O

With these two proposition we can now prove the converse of Proposition 3.10 and
therefore the alternative characterisation of L .

Theorem 3.14 For every pair of processes p,q, p & q if and only if p < q.

Proof: We need only prove p < ¢ implies p & ¢ and this follows directly from the
previous two propositions. For example suppose that p || s, ¢ |} s and B € A(q, s') where
s is new. We derive a contradiction from the assumption that for all A € A(p,s') A < B.
For each such A there must be some x4 in A and not in B. Let L = {a4| A€ A(p,s)}
and choose X so that it contains both fn(p) and fn(q). Then p must e(s’, L)x whereas
q need not always pass e(s’, L)x and this contradicts the fact that p L ¢. O

18

This theorem also shows that the behavioural preorder L is determined by a small
collection of tests, namely all those of the form e(s, B)x or ¢(s)x. We call this set of
tests C'Test and they will be used in the next section.

As an application of the alternative characterisation we show that L is preserved by
most of the operators of the language.

Proposition 3.15 For every operator op in ¥ p; ¢ implies op(...,p;,...) &
op(. .y qiy...).

Proof: For the operator | it is best to prove this directly from the definition of L
using the fact that p | ¢ must e if and only if p must ¢ | e. For the other operators is
is easier to prove the result for <. The only non-trivial case is for the binding operator
(y)—. As an example of the proof technique let us show that if p < ¢ and (y)g 1} s then
(y)p I s. So without loss of generality we can suppose that (y)g == r where r 1. If the
rule Open is not used in this derivation then r has the form (y)¢’ where ¢ == ¢’. So
q 1 s from which it follows that p {} s and therefore (y)p {I s since y can not appear in
s. So suppose Open is used. Then the derivation can be viewed as

51

()g =5 (a2 g {v/y} == r

where
51 Ty
= q1 — q;

and v Y}

4 Modelling the Language L,

In this section we address the

Given such a natural interpretation, D, we can define a semantic interpretation of L,
following the usual approach of denotational semantics. We let Envp be the set of D-
environments, i.e. mappings from PVto D, ranged over by p and we assume an evaluation
function []: BExp —— {tt, ff}. Then the semantics of the language L, is given as a
function:

D[|: Lr — (Envp — D)
and is defined by structural induction:
i) D[X]p=p(X)
ii) D]op(t)]p = opp(D[t]p)
iii) D[recPt]p = YAd.D[t]p[d/P]

iv) D[ifbethent elseu Jp = D[t]p if [be] =1t
Dlulp if bl = f

v) Dlx(y).t]p = inp(x, Ay.D[t]p)

where Y is the least-fixpoint operator for

XaYaz) = XaY)aZ
XaY = YaX

XX = X
X+(Y+2) = (X+Y)+ 7
X+Y = Y+ X
X+X = X
X+l = X

pre.X + pre.Y = pre (X @Y)
v(y) X +z(y)Y = a(y) Xda(y)Y
zy. X +7y.Y = 7y.X DTy

the principal being a version of the interleaving law. Unlike the standard theories of
concurrency, such as that in [Mil89], the restriction operator can not be eliminated from
all finite terms using the equations; this is a reflection of the extra power of restriction
in the w-calculus. However the irreducible occurrences can be coded up as a form of
derived prefix.

Definition 4.6 If © # y then T(y)p is a shorthand for the term (y)Ty.p and the subject
of the prefix T(y) is ~

(XaY)|Z

Lemma 4.9 [f p | then there exists a hnf, hnf (p), such that b, p = hnf (p) and
| p | =1hnf(p) |

Proof: It is virtually identical to that of Proposition 4.2.1 of [HI91] and is therefore
omitted. The only new ingredient is that in the subterms pz there is at most one
summand of the form Z(y).p’. If during the reduction procedure two such summands are
generated then they can be replaced by one using the equations as follows:

T(y).p +T(2).p" = T(w)p{w/y} +7T.(w)p"{w/z} by a-conversion, where w is new

= (w)(

I p<q, q=r
p<p p<r

pi<gqg, 1<i1<n
11
op(p1s--sPn) < op(qus- .. qn)

for every op € {my., (z),+, B, |}

E for every instance of an inequation
R Y q

a P=adq

P=q
Input p{z/y} < q{z/y} for all names z

z(y).p < x(y).q
< !

If1 P=p

if be then p else ¢ < if be then p’ else ¢

/

qg<q

operations are defined pointwise:

op(....0,...)={opp,(...,e,...) |e€l}]
where S |

and it follows that Cgx(y).b] = {[x(y).b]} | .

Proposition 4.15 For every b € BF and process ¢ t, b < ¢ implies Cg[b] < Cglq].

Proof: The proof follows from the property

F, b < ¢ implies that there exists a d < ¢ such that
for some m >0 F b < d0™, (%)

This is proved by induction on the length of the proof of -, 6 < ¢ and proceeds by
considering the last rule applied in the proof. There are only three non-trivial cases, the
Input rule, the Unwind rule and the Transitivity rule. As an example we look at the Input
rule. Here b, ¢ have the form x(y).0/, x(y).p respectively and -, b < ¢ has been inferred
because for all z =

Lemma 4.18 For every test e € CTest p must e implies that there exists some b € BF

for any f: N — Cp.

Let f = V f™ where f" is defined such that for all # € N f*(x) = Q and for all
v € N™ f*(x) is a compact element. This is possible because Cp is an algebraic cpo.
Then incy(x, f) =V, tneg(x, f). It is not difficult to show that for each n

incg(x, [) = {[z(w). if w € N7 then f"(w) else Q@ |} |
and therefore

ine,(z, f) = \V{{z(w). if v € N™ then ["(w) else Q]} | .

n

So
ip(ingy(z, f)) = \/ D[z(w). if w € N then f™"(w) else Q]
= \inp(z, M. ifw € N then D[f"(w)] else L)
= \/ZnD(xlefn)

= inD(J},iD . f)

These results show that at least there are reasonable models of the language and as
a byproduct we have a sound and complete proof system for the behavioural preorder.
This is obtained by adding w-induction to the proof system. Note that one can also
replace the infinitary Input rule with the finitary one suggested by Proposition 3.16 and
retain completeness. However C' [y, the initial fully-abstract model constructed in this
section, is a term model and it would be more satisfactory if we had an independent
description of it, for example as some modification of the acceptance trees in [Hen88|.
The main difficulty here is to find a version of these trees which will support a reasonable
definition of the restriction operator (y).

Another deficiency in this section is the general definition of what constitutes an
interpretation of the language. It would be more satisfactory if this took into considera-
tion the fact that the operator (y) also binds names. So in addition to having a special
way of interpreting the input operator, using the functions inp, we would also have a
special function for restriction. One suggestion would be to have a function resp of type
(N — D)+ D and then to define D[(y)t]p to be resp(Ay.[t]p). With this definition
a-conversion would be sound in all interpretations. However it is difficult to extend the
results of this section to this new form of interpretation. It seems that a more subtle
interpretation of restriction is required and one possibility is to adopt the approach taken

in [Win88].

References

[BD92] M. Boreale and R. DeNicola. Testing for mobile processes. In Proceedings
of CONCUR 92, 1992.

31

[GTWWTT] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra seman-
tics and continuous algebras. Journal of the Association for Computing

Machinery, 24(1):68-95, 1977.

[Gue81] I. Guessarian. Algebraic Semantics. Lecture Notes in Computer Science vol

99, 1981.
[Hen88] M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

[HI91] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes
with value-passing. Information and Computation, to appear, 1991.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part i.
Information and Computation, 100(1):1-40, 1992.

[MPWO92b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part
ii. Information and Computation, 100(1):41-77, 1992.

[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Research
Notes in Theoretical Computer Science, Pitman/Wiley, 1988.

[Win88] G. Winskel. A category of labelled petri nets and compositional proof
system. In Proceeding of the conference “Logic in Computer Science”, Fd-

inburgh, July, 1988.

32

