
Timing and Causality in Process Algebra

Luca Aceto and David Murphy

University of Sussex and University of Birmingham



Page 2 Version dated 4th August 1993

with the process (a . b .Nil) jj c .Nil. If we add timing, writing a



Timing and Causality in Process Algebra Page 3

2.1. Syntax

We will use a syntax derived from both CSP [29] and CCS [35], assuming as given some set

of actions, A, with � (which will be used for internal actions of a process) not in A. We also

assume a bijection : A! A (giving the complementary action of a), extend such that x = x

for all x 2 A [ A, and write Act for A [ A. We will use a; b; c; d etc. to range over Act , and

write R

+

for the positive reals. The syntax of cIpa is then de�ned by

P :: = a .P j Wait t .P j P + P j PnC j Nil j P



Page 4 Version dated 4th August 1993

restriction can last, dur(P ) 2 }

�n

(R

+

[ f0g). (Here }

�n

(X) is the set of �nite subsets of X .)

dur(Nil) = f0g dur(Wait t .P ) = ft

0

+ t j t

0

2 dur(P )g

dur(P + Q) = dur(P ) [ dur(Q) dur(a .P ) = ft

0

+ �(a) j t

0

2 dur(P )g

dur(P jj Q) = fmax(t; t

0

) j t 2 dur(P ); t

0

2 dur( ()



Timing and Causality in Process Algebra Page 5

reachability All states mentioned are reachable from the initial con�guration, and all events

label some transition:

s 2 S implies s

0

!

�

s

and e 2 E implies 9s; u 2 S such that s

e

�! u

Note that the Attss we consider are root unwound in the sense of [18, chapter 3], i.e. they

have no incoming edges at the root:

:(s

�@t

���!

�

s

0

)

2.5. Con�gurations

Consider the general timed transition rule of the last section. In keeping with the idea of

urgency, we want P to begin as soon as a has ended in a .P , i.e. at time �(a) assuming that a .P

started at time 0. However, if con�gurations are just process fragments, we y.



Page 6



Timing and Causality in Process Algebra Page 7

PAL

s

1

�@t

���!

�

s

1

0

s

1

jj s

2

�@t

���!

�

s

1

0

jj s

2

PAR

s

1

�@t

���!

�

s

1

0

s

2

jj s

1

�@t

���!

�

s

2

jj s

1

0

Sync

s

1

a@t

���!

�

s

1

0

s

2

a@t

���!

�

s

2

0

s

1

jj s

2

�@t

���!

�

s

1

0

jj s

2

0

Display 2. The timed operational semantics of parallelism.

the execution of P jj Q, except during synchronisation, so they are genuinely local. Notice too

that synchronisation is only allowed provided the local clocks of the synchronising actions match

exactly (rule Sync). This seems reasonable, as any protocol which implements synchronisation

requires a set-up phase before the synchronisation can be said to have happened, during which

what e�ectively happens is a synchronisation of clocks [3]. Moreover, our clocks are not supposed

to model all of the features of physical clocks in actual implementations, so abstracting awa0 Td
(the)Tj
19.6801 0 Tdtl



Page 8 Version dated 4th August 1993

duration: if we have s R u



Timing and Causality in Process Algebra Page 9

Note, however, that a .Wait t � a as the only behaviour that can be observed

of both processes is that they can execute action a at time 0 with duration �(a).

Law 2 There are some nontrivial relationships between processes with �s, e.g.

a .Wait t .Wait t

0

.P = a .Wait (t+ t

0

) .P

Indeed, it is easy to see that a .Wait t � a .Wait t

0

and Wait t � Wait t

0

for

all t; t

0

2 R

+

. Moreover, we have that a .(Wait t jj b) � a . b.

3.2. Compositionality and Timing

We will now show that rooted branching bisimulation is a congruence, and discuss the

timing{dependence of our results. More precisely, we relate the compositionally de�ned duration

function dur(P ) (which was de�ned for restriction-free processes in section 2.3) and the opera-

tional semantics given above, showing that for each such process, t 2 dur(P ) i� the con�guration

P 0 can evolve to a terminal con�guration s with maximum time t according to the operational

semantics. This then allows us to prove the compositionality result.

De�nition 5. Let maxtime(s) denote the largest clock time t occurring in s, and, for each t � 0,

s%

t

denote the con�guration obtained by adding t to each clock time occurring in s, i.e. %

t

is

the unique homomorphism satisfying

Nil t

0

%

t

= Nil (t

0

+ t)

(a .P ) t

0

%

t

= (a .P ) (t

0

+ t)

(Wait t

00

.P ) t

0

%

t

= (Wait t

00

.P ) (t

0

+ t)

The following lemma can then be easily shown by structural induction on s:

Lemma 6. For all s 2 C(cIpa) and t 2 R

+

, the following statements hold:

(i) s

�@t

0

���!

�

s

0

implies s%

t

�@(t

0

+t)

���!

�

s

0

%

t

;

(ii) s%

t

�@t

1

���!

�

s

1

implies s

�@t

0

���!

�

s

0

for some s

0

2 C(cIpa) and t

0

2 R

+

such that s

1

= s

0

%

t

and t

1

= t

0

+ t;

(iii) maxtime(s%

t

) = t +maxtime(s).

This gives us that the function dur is indeed in agreement with the operational semantics:

Proposition 7. For all restriction-free cIpa processes P and times t 2 R

+

, t 2 dur(P ) i� there

exists s 2 C(cIpa) such that P !

?

s 6! and maxtime(s) = t.

Proof. A straightforward induction on the structure of P , using Lemma 6 in the cases dealing

with action and Wait t pre�xing.

We can now tackle the compositionality of Rbb:

Theorem 8. Rooted branching bisimulation is compositional; JP K � JQK implies

JP 	RK � JQ	 RK

for 	 2 f+; jjg. Furthermore, for any t 2 R

+

and a 2 Act ,

Ja .P K � Ja .QK , JWait t .P K � JWait t .QK and JPnCK � JQnCK

Proof. This is an extension to cIpa of van Glabbeek and Weijland's for BPA [21]. The only cases

which depart slightly from the standard proof are those for action andWait t pre�xing. To show

that � is preserved by these operations, we prove that if R : JP K � JQK, then the symmetric

closure of the relations

R

pre

= f(a .P; a .Q)g [ f(s

1

%

�(a)

; s

2

%

�(a)

) j s

1

R s

2

g

R

wait

= f(Wait t .P;Wait t .Q)g [ f(s

1

%

t

; s

2

%

t

) j s

1

R s

2

g



Page 10 Version dated 4th August 1993

are rooted branching bisimulations between the relevant process graphs. This can be easily

veri�ed using Lemma 6.

3.3. Time Uniformity

The reals are often problematic in computer science because they admit unrealisable features:

the function that takes value a at the rationals and b at the irrationals, for instance, does not

correspond to the timed execution of a process we can build. In the last subsection we showed

that our semantics is uniformly parameterised by the reals; lemma 6 states that we can add t

to all the clocks in any con�guration, and the e�ect will just be to shift all of the transitions

from that con�guration forward t in time. Thus our semantics varies smoothly rather than

pathologically with time.

Here we examine another facet of the interaction of timing and behaviour |how � varies as

the duration function is changed. Clearly, the identi�cations made by the congruence � depend

on the particular choice of �. For instance, an equality like

(a . b jj a)na � Wait t . b

holds i� �(a) = t.

If for all a, �(a) = � for some � > 0, we recover some of the identi�cations of an untimed

equivalence from �; here, for instance, we have

(a . b jj a)na � (c . b jj c)nc

However, the presence of timing information still allows us to make distinctions which are not

made by untimed equivalences. For example, we would still di�erentiate the processes (a . b jj

a)na and (a .a . b jj a .a)na, which are identi�ed by all the untimed equivalences which abstract

from the internal evolution of processes we are aware of.

We shall now show that, if we restrict ourselves to constant duration functions, � does not

depend on the choice of duration for the actions over Wait t{free processes. First, we introduce

some notation that will be useful in the proof of this result. For each � 2 R

+

, we shall write �

�

for

the rooted branching bisimulation over Wait t{free processes induced by the duration function

which assigns duration � to each action; using such a duration function, all the transitions

between Wait t{free con�gurations will have duration �. Furthermore, we write

�@t

���!

�

for the

�





Page 12 Version dated 4th August 1993



Timing and Causality in Process Algebra Page 13

Proposition 19. If P is a cIpa process, then JP K is a timeful, well{caused, �nite Atts.

Proof. Timefulness can be easily shown by structural induction on P . In order to prove that the

well{caused property holds, it is su�cient to show that for all s 2 C(cIpa),

s

�

1

@t

1

���!

�

1

s

1

�

2

@t

2

���!

�

2

u and t

2

6= t

1

+ �

1

implies 9s

0

1

2 S : s

�

2

@t

2

���!

�

2

s

0

1

�

1

@t

1

���!

�

1

u

Again, a structural induction on s su�ces.

4. Action Re�nement

Action re�nement,|the operation of replacing an action by a process,|has recently been

the object of much interest in concurrency theory. Here we show that our durationful actions

allow a particularly simple de�nition of action re�nement. The technical development we present

is inspired by [22] and [18, x3.6].

We shall, following Gorrieri [25], think of action re�nement as a tool for structuring the

meanings of processes; a high-level description of a complete process can be given, then further

detail can be exposed by action re�nement. Thus our notion of action re�nement will be a

semantic one.

De�nition 20. A process P is a valid re�nement of an action a, written P re�nes a, i� (every

execution of) the process lasts the same time as the action: dur(P ) = f�(a)g.

This is rather a strict notion of re�nement; we even forbid processes that are always quicker

than an action from being valid re�nements of it. We do this partly for technical reasons, and

partly to emphasise that speed{up is not always desirable; there are protocols which work at

some speeds and fail at faster rates [3]. Note that we do not allow eed999.4(/R82 0.24 199 0or)-15999.4(tN)]TJ
20 Td99.756(e)-99.3(pr)-14999.since(cess)-4 Tf
48.7200.24 Tf
4.31992 0 Td
(P)Tj
/R82 0.24 Tf
8.4 0 Td
[())-12000(=)]TJ
/R136 0.240(the)-14999.7(acti(>�nition)Tj
51.1199 0)Tj
28.3199.480092that

u ) =



Page 14 Version dated 4th August 1993

Now suppose that �(b) = �(a) + �(c) and consider the mapping F : A ! cIpa which

maps b to a . c, and acts like the identity on all the other actions. This is clearly a well{de�ned

semantic substitution: the result of applying



Timing and Causality in Process Algebra Page 15

In the second case there must be a corresponding path u ) u

1

a@t

���!

�

0

u

00

in H

s.t. s R u

1

and s

00

R u

00

. Then, in F (H) we �nd a path u) u

1

�@t

���!

�

u

0

s.t. s F (R)

u

1

and s

0

F (R) u

0

.

(2.) The nodes s and u originate from related copies F (a)

i

and F (a)

j

of some substituted

graph

q

F (a)%

t

0

y

. Then s

�@t

���!

�

s

0

is an edge in F (a)

i

and s and u are copies of

the same node in

q

F (a)%

t

0

y

. So, there is an edge u

�@t

���!

�

u

0

in F (a)

j

where u

0

is

a copy of the same node in

q

F (a)%

t

0

y

that s

0

is a copy of, and s

0

F (R) u

0

.

(iii) The case of an edge in R(H) follows symmetrically.

5. An Algebraic Characterization of �

The purpose of this section is to axiomatize the congruence relation � de�ned in the previous

section over the language cIpa. Given the fundamental rôle played by con�gurations in de�ning

the semantics of cIpa processes, we shall provide a complete axiomatization of � over the set of

con�gurations C(cIpa). The key to the axiomatization presented in this section is the realization

that the interpretation of processes given by an action-timed transition system is just an ordinary

labeled transition system over a set of actions. The only di�erence being that the actions are

structured, as they carry information on the timing of their occurrence and their duration.

Following van Glabbeek and Weijland [18, 19], there is a standard way of axiomatizing rooted

branching bisimulation-like relations over ordinary, �nite, acyclic labeled transition systems. The

application of their method to cIpa involves the reduction of terms to (some syntactic notation

for) trees over the set of actions into consideration. However, in our Atts semantics processes

evolve by performing events in E and these are not in the signature for con�gurations, so this

method is not directly applicable to the language C(cIpa). In order to apply van Glabbeek and

Weijland's algebraic characterization to provide an axiomatization for � over C(cIpa), we thus

need to extend the language C(cIpa) to EC(cIpa), where EC(cIpa) is built as C(cIpa) with the

additional formation rule:

� 2 E and s 2 EC(cIpa) =) � : s 2 EC(cIpa)

Thus the signature of the language C(cIpa) has been extended by allowing pre�xing operators

of the form � : , for � 2 E. The language EC(cIpa) thus allows one to pre�x timed, durationful

events to con�gurations and this is what will be needed to de�ne a suitable notation for trees.

The extended set of con�gurations EC(cIpa) inherits the structural congruence � from its

sublanguage C(cIpa), and in what follows EC(cIpa) will always be considered modulo �. We shall

use s; u; w; s

0

; : : : to range over EC(cIpa) and �; � to range over E. The operational semantics

for EC(cIpa) is obtained by extending



Page 16 Version dated 4th August 1993

s+ u = u+ s (A1)

(s+ u) + w = s + (u+ w) (A2)

s+ s = s (A3)

s+ Nil = s (A4)

� : (� : (s+ u) + s) = � : (s+ u) (H)

(P + Q) t = P t+ Q t (S1)

(PnC) t = (P t)nC (S2)

(P jj Q) t = (P t) jj (Q t) (S3)

(a .P ) t = (a; t;�(a)) : (P (t+�(a))) (R1)

(Wait t

0

.P ) t = � : (P (t+ t

0

)) (R2)

Nil t = Nil (R3)

(s+ u)nC = snC + unC (R4)

((�; t; �) : s)nC = Nil if � 2 C [ C (R5)

((�; t; �) : s)nC = (�; t; �) : snC if � =2 C [ C (R6)

 

X

i2I

(�

i

; t

i

; �

i

) : s

i

!

�

�

�

�

�

�

0

@

X

j2J

(�

0

j

; t

0

j

; �

0

j

) : u

j

1

A

= (Int)

X

i2I

(�

i

; t

i

; �

i

) :

0

@

s

i

�

�

�

�

�

�

0

@

X

j2J

(�

0

j

; t

0

j

; �

0

j

) : u

j

1

A

1

A

+

X

j2J

(�

0

j

; t

0

j

; �

0

j

) :

  

X

i2I

(�

i

; t

i

; �

i

) : s

i

!

�

�

�

�

�

�
u

j

!

+

X

(i;j): �

i

=�

j

;t

i

=t

j

� : (s

i

jj u

j

)

Display 3. Equations over con�gurations.

(ii) if � 2 E and s is a sumform then � : s is a sumform;

(iii) if s and u are sumforms, so is s + u.

In order to give a complete axiomatization for Rbb over EC(cIpa) (and, consequently, over

cIpa



Timing and Causality in Process Algebra Page 17

We can now state the promised completeness theorem:

Theorem 26. For all s; u 2 EC(cIpa), s � u i� s =

C

u. In particular, for all cIpa processes P;Q,

P � Q i� P 0 =

C

Q 0.

Proof. (Outline.) The proof of this result can be given following standard lines. Indeed the

result follows from the following statements:

Soundness: For all s; u 2 EC(cIpa), s =

C

u implies s � u;

Completeness for sumforms [18, 19]: For all sumforms s; u, s � u implies s =

C

u can be proved

using axioms (A1)-(A4) and (H); and

Normalization: Every s 2 EC(cIpa) is provably equal to a sumform, i.e. for each s 2 EC(cIpa)

there exists a sumform s

0

such that s =

C

s

0

.

The soundness of the equations in display 3 can be easily shown by exhibiting appropriate

rooted branching bisimulations. Indeed, all the equations but (H) are sound with respect to

strong bisimulation equivalence [35].

The completeness of axioms (A1)-(A4) and (H) for branching bisimulation over �nite trees

has been proven by van Glabbeek and Weijland in [18, 19].

Finally, the normalization result can be proved in standard fashion by applying equations

(S1){(S3), (R1){(R6) and (Int) as rewrite rules from left to right.

Other authors, notably Ferrari et al. [17], have noted that expansion theorems often hold in

the noninterleaving setting when the algebraic structure of transitions is taken into account;

here we have shown that timing and duration are su�cient provided that we express the

relationship between con�gurations rather than processes. Our account (Int) is a straightforward

adaptation of Milner's interleaving law to our setting. Indeed, we could treat a di�erent notion

of synchronisation merely by presenting the appropriate operational rule and modifying (Int);

this would, for instance, allow us to treat the loose notion of timed synchronisation given in

[24]. It should be noted, however [op cit.], that Rbb would not then be a congruence, so such

modi�cations are not always wholly propitious.

6. ATTS s and Other Models of Concurrency

In this section we �rst give a broad overview of the relationship between the work reported

here and salient other models in the literature. We then, to make a precise connection, relate

our equivalence � for a class of concrete processes to several other noninterleaving equivalences

proposed in the literature. To reinforce our claim that timing information captures independency,

we show how a class of well{behaved Attss can be translated into the asynchronous transition

systems of Bednarczyk.

It is possible to classify noninterleaving behavioural theories for process algebras by means

of the information they use to distinguish parallel processes from purely sequential ones. To

begin with, we indicate some of the main notions in the process{algebraic literature and their

relationship to our own, making no claim of completeness. As an aid to this discussion, we

shall make use of the standard example in the literature, namely the processes P = a jj b and

Q = a . b+ b .a.

� Boudol et al. [11] argue for the use of distribution information to distinguish parallelism

from sequential nondeterminism. The processes P and Q are distinguished in this

approach because there are two locations in P and only one in Q.

� Hennessy and the �rst author [2, 27] use abstract duration information to distinguish

parallel processes from sequential ones. In this approach, P is distinguished from Q since

it can start b before a has ended whereas Q cannot.





Timing and Causality in Process Algebra Page 19

P + Q = Q+ P (A1)

(P + Q) + R = P + (Q+R) (A2)

P + P = P (A3)

P + Nil = P (A4)

(P + Q) T R = P T R+ Q T R (LM1)

(P T Q) T R = P T (Q jj R) (LM2)

P T Nil = P (LM3)

Nil T P = Nil (LM3)

P jj Q = P T Q+ Q T P (PAR)

Display 4.



Page 20 Version dated 4th August 1993

By the proviso of the proposition, substitutivity and Proposition 29, we have that, modulo �,

fs

t

1

; : : : ; s

t

k

; s

1

; : : : ; s

h

g = fw

t

1



Timing and Causality in Process Algebra Page 21

location equivalence. In fact, regardless of the duration of actions a and b, it would identify the

processes

P = (a .� . c jj b .� .d)nf�g and Q = (a .� .d jj b .� . c)nf�g

which are distinguished by location equivalence. Thus we have:

Proposition 33. For full CCS, � is, in general, incomparable with the weak versions of causal

bisimulation equivalence, location equivalence and ST-bisimulation equivalence.

Proof. Consider P = (a . b jj



Page 22 Version dated 4th August 1993

Immediately we have that S

0

is a rooted transition system, which is deterministic, acyclic and

satis�es the reachability property.

Our next task is to de�ne a suitable notion of independence over this transition system.

Clearly, if e

0

= (s; e; s

0

), f

0

= (s

0

; f; u

0

) and there exists an ill-timed path s

e

�! s

0

f

�! u

0

in S,

then e

0

and f

0

should be independent. But this relation is not symmetric, for two reasons; �rstly

the commuted path (which we know exists as S is well-caused)

s

(s;f;u)

���!

0

u

(u;e;u

0

)

���!

0

u

0

may (fortuitously) not be ill{timed, and secondly, the `events' (s; e; s

0

) and (u; e; u

0

) are di�erent,

while we want them to be the same in the generated ATS. Our solution is to quotient E

0

by a

suitable congruence:

De�nition 35. De�ne for S

0

the relation � � E

0



Timing and Causality in Process Algebra Page 23

7.1. The Problem

The purpose of a data-gatherer is to take measurements at prespeci�ed times. In usual

applications, a number of sensors are attached to a data-gatherer. Each sensor must be turned on

at some given time before the measurement it takes can be made (typically so that thermocouples

have time to stabilise). The sensor then takes a measurement and hands the data back to the

data-gatherer. Sensors are often cheap and unsophisticated devices, without internal clocks or

bu�ering, so the data-gatherer must ensure that the sensor is turned on at the right time, and

that it is ready to receive the data when it is ready. Thus a sensor can be speci�ed as

Sensor1

def

= Wait t

1

.Start1 .Wait t

0

1

.Read1 .Write1

which is to say that it is a device that waits some unspeci�ed time t

1

until it is turned on

by a Start1 action. After being turned on by this action, it waits time t

0

1

before taking a

measurement, which it then Writes.

The data-gatherer, then, will be responsible for doing a Start1 with the correct t

0

1

, which

will ensure that the sensor does a Read1 when required. It must also be ready t

0

1

+�(Read1)

units of time after �nishing the Start1 to do a Write1 , allowing the sensor to transfer data

back to it. Finally, it Processes the data.

The design of the data-gatherer is only non-trivial when more than one sensor is considered,

so suppose we also have

Sensor2

def

= Wait t

2

.Start2 .Wait t

0

2

.Read2 .Write2

(In a real application, the requirement is recurrent; we have to make a series of measurements

at each sensor, rather than just one. However, our design will extend smoothly to this setting,

so we avoid the use of recursion to keep the complexity of the design down.)

7.2. Timing Analysis

Suppose that the twomeasurements Read1 and Read2 have deadlines d

1

and d

2

respectively,

i.e. Readi must happen at t = d

i

. Clearly, then, we must have the deadline equation

d

i

= t

i

+�(Start i) + t

0

i

in order for the deadlines to be met.

Now, clearly the design of the data-gatherer will depend on the speci�c deadlines. For

instance, Write i starts at time d

i

+ �(Readi), so if the intervals

[d

1

+�(Read1); d

1

+�(Read1) + �(Write1)]

and

[d

2

+�(Read2); d

2

+�(Read2) + �(Write2)]

overlap, then a purely sequential implementation is not possible, as the data-gatherer will need

to do both a Write1 and a Write2 simultaneously. Similarly, if we need to turn on both

sensors simultaneously, we will end up needing a parallel implementation. Suppose, then, for

the moment, that the intervals above do not overlap, and neither do

[t

1

; t

1

+ �(Start1)] and [t

2

; t

2

+�(Start2)]

(which is eminently reasonable, as the Start actions are usually of very short duration).

Then we can implement the data-gather in a sequential fashion (which is useful, as the

resources for a parallel implementation are often not available).





Timing and Causality in Process Algebra Page 25

Our description of this, sequential version of the system, is then

System

def

= (DataGatherer jj Sensor1 jj Sensor2)nfStarti;Writeig

Thus far, the example has demonstrated a feature of the cIpa synchronisation discipline;

often we write a process including Wait t for some unspeci�ed t, as we did with the Sensoris

and t

i

s, and then �x the value of t so that some desired synchronisation can happen. In the

above, we have also derived assumptions necessary on timing constraints to allow a sequential

implementation. This practice corresponds well with informal design procedures in real{time

systems, where delays are often inserted to allow some desired rendez-vous

z

and timing properties

exploited in an implementation.

7.4. Correctness

The correctness of the implementation (at least as far as it is captured by cIpa) can be

demonstrated by showing that it is equivalent to a process which does a Readi at d

i

for each i,

and then, suitably later, Processes the data. However, our implementation is predicated on a

set of timing assumptions that allow a sequential implementation, and these must be built into

our speci�cation.

The �rst read must begin at time d

1

, and the second at d

2

, which happens after d

1

, so we

have

Spec

def

= (Wait d

1

.Read1) jj (Wait d

2

.Read2 .



Page 26 Version dated 4th August 1993

means of equations X

def

= P , where P is a process term built from cIpa operations and constants.

The behaviour of these recursively de�ned processes is given by the following standard rule

Rec

P t

�@t

���!

�

s

X t

�@t

���!

�

s

X

def

= P; X time{guarded in P



Timing and Causality in Process Algebra Page 27

7. M. Bednarczyk,



Page 28 Version dated 4th August 1993

31. M. Joseph and A. Goswami, Relating computation and time, Technical Report RR 138, Department

of Computer Science, University of Warwick, 1985.

32. L. Lamport,On interprocess communication. part I: Basic formalism, Distributed Computing, Volume

1 (1986), Pp. 77{85.

33. F. Mattern, Virtual Time and Global States of Distributed Systems, in Parallel and Distributed

Algorithms, (M. Cosnard et al., Eds.), North-Holland, 1989.

34. A. Mazurkiewicz, Traces, histories, graphs: Instances of a process monoid, in Mathematical

Foundations of Computer Science, Volume 176, Springer-Verlag LNCS, 1984.

35. R. Milner, Communication and concurrency, International series on computer science, Prentice Hall

International, 1989.

36. R. Milner and F. Moller, Unique decomposition of processes (note), Theoretical Computer Science,

Volume 107 (1993), Number 2, Pp. 357{363.

37. F. Moller, Axioms for concurrency, Report CST-59-89, Department of Computer Science, University

of Edinburgh, 1989.

38. F. Moller and C. Tofts, A temporal calculus of communicating systems, in the Proceedings of Concur,

Volume 459, Springer-Verlag LNCS, pp. 401{415, 1990.

39. D. Murphy, Intervals and actions in a timed process algebra, Technical Report Arbeitspapiere der

GMD 680, Gesellschaft f�ur Mathematik und Dataverarbeitung, St. Augustin, 1992, Presented at

MFPS '92 and submitted to Theoretical Computer Science.

40. D. Murphy and D. Pitt, Real{timed concurrent re�neable behaviours, in Proceedings of Formal

Techniques in Real Time and Fault Tolerant Systems (J. Vytopil, Ed.), Volume 571, Springer-Verlag

LNCS, 1992.

41. X. Nicollin and J. Sifakis, The algebra of timed processes ATP: Theory and application, Technical

Report RT-C26, Laboratoire de G�enie Informatique de Grenoble, 1990.

42. G. Plotkin, A structural approach to operational semantics, Technical Report DAIMI{FN{19,

Computer Science Department,

�

Arhus University, 1981.

43. V. Sassone, M. Nielsen and G. Winskel, A hierarchy of models for concurrency. To appear as a DAIMI

Technical Report,

�

Arhus University, 1993.

44. S. Schneider, An operational semantics for timed CSP, Information and Computation, Volume to

appear (1992).

45. Wang Yi, CCS + Time = an Interleaving Model for Real Time Systems, in the Proceedings of ICALP,

Springer-Verlag LNCS, 1991.


