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ABSTRACT. This paper presents a fully abstract semantics for a variant of the untyped λ-calculus
with recursive declarations. We first present a summary of existing work on full abstraction for the un-

typed λ-calculus, concentrating on ABRAMSKY and ONG’s work on the lazy λ-calculus. ABRAMSKY

and ONG’s work is based on leftmost outermost reduction without sharing. This is notably inefficient,
and many implementations model sharing by reducing syntax g



1 Introduction

This paper is about the relationship between two fields of computer science: full

abstraction, and concurrent graph reduction. Full abstraction is the study of relat-

ing denotational and operational semantics. Concurrent graph reduction is an ef-

ficient parallel implementation technique for non-strict functional programming
languages.

In this paper we apply the techniques of ABRAMSKY (1989) and ONG (1988)

to present a fully abstract denotational semantics for the concurrent graph reduc-
tion algorithm given in PEYTON JONES’s textbook (1987).

In doing so, we use methods from full abstraction, compiler implementation,

and concurrency theory.

1.1 Full abstraction

Full abstraction, originally defined by MILNER (1977), explores the relationship





It was developed by WADSWORTH (1971) as an implementation of leftmost-

outermost reduction. He observed that leftmost-outermost reduction can take ex-

ponential time to evaluate an expression, due to loss of sharing information. For
example, if we define:

I= λx : x ∆ = λx : xx M0N = N Mn+1N = M(MnN)

Then the evaluation of ∆n+1
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� 2 reductions to terminate. This exponential blow-up is
caused by copying ∆n

I in the reduction ∆n+1

I! (∆n

I)(∆n

I), and can clearly be

seen if we draw the syntax trees for this reduction, where ‘@’ denotes function

application:
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This inefficiency is caused by the implementation of β-reduction with substitu-

tion. When we reduce (λw:M)N !M[N=w], we make a separate copy of N for
each occurrence of w in M, and each copy then has to be reduced separately. We

can remove this inefficiency if, rather than copying terms, we copy pointers to

terms, that is we reduce syntax graphs rather than syntax trees. For example, the
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(Spine traversal)
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(Induction)
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not confluent (or Church–Rosser), since by spine traversal:
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� Garbage collection is semantically unimportant, so a graph can converge iff

it can converge without garbage collecting. One would expect this to be true,

since garbage collection is introduced only because of memory limitations.

� Tagging is semantically unimportant, so a graph can converge irrespective of

whether its nodes are tagged or not. In particular, this means that concurrent

evaluation is semantically equivalent to sequential evaluation.

� Referential transparency, which means that it is semantically unimportant if

a graph contains a copy of a node, or a pointer to a node.

There are a number of applications for a fully abstract semantics:

VERIFYING COMPILER OPTIMIZATIONS. A number of compilers of non-strict

functional languages, notably JOHNSSON’s (1984) Lazy ML compiler for the G-

machine, make use of optimizations. Many optimizers, notably peephole opti-

mizers (PEYTON JONES, 1987, Ch. 20) replace one small term with another se-

mantically equivalent, but more efficient term. If a semantics is correct, then we

know that any such optimization will have the same operational behaviour in all
contexts.

Unfortunately, if the semantics is not complete, then there may be valid op-

timizations that are not semantically equivalent, and there is a temptation for the
compiler writer to use ad-hoc reasoning to justify a semantically invalid optimiza-

tion, on the grounds that the semantics is too fine. If the semantics is fully ab-



2 Tree reduction

This Chapter presents a summary of existing work on fully abstract models

for leftmost-outermost reduction of the untyped λ-calculus. It concentrates on
ABRAMSKY (1989) and ONG’s (1988) work on the lazy λ-calculus, but also

includes material from ABRAMSKY (1991), BARENDREGT (1984), BARAN-

DREGTet al. (1983) BOUDOL (1992), PIERCE (1991) and PLOTKIN (1983).

2.1 The λ-calculus with P

In this Chapter, we will discuss the theory developed by ABRAMSKY and ONG,

based on leftmost-outermost reduction. This is the semantic basis of the non-

strict functional languages such as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN’s
(1982) Ponder, JONES’s (1992) Gofer, TURNER’s (1985) Miranda, and Haskell

(HUDAK et al., 1992).

In the untyped λ-calculus, all expressions are functions, and these functions

take functions as inputs, and return other functions. We can regard this as a pure
theory of computation, abstracted away from considerations of data.

The untyped λ-calculus has three forms of expression:

� A free variable x.

� An application MN.

� An abstraction λx :M.

Such terms are sequential and the only form of computation is β-reduction, where

an abstraction is applied (λx :M)N ! M[N=x]. Following PLOTKIN (1977) we

would expect that finding a fully abstract semantics will be much simpler if we
add some form of parallel computation. There are a number of possible paral-



since if







ourselves to ω-continuous functions, that is if:

a is the limit of a0 � a1 � �� �

then:

f a is the limit of f a0 � f a1 � �� �

For example, this bars the odd function since:

1
2

is the limit of 0� 1
4

�

3
8

� �� �

but:
3
4 is not the limit of 1

4 �

3
8 �

7
16 � �� �

We define the denotational semantics of Λ

P

in D' (D!D)

?

. To show that such
a D must exist, we present it as the limit of a sequence of finite domains D0;D1; : : :

where:

D0 = 1 Dn+1 = (Dn!Dn)
?

This can also be presented as the fixed point of a functor F between domains:

FDi = (Di!Di)
?

= Di+1

Then in order to show that D exists, we show that F is continuous. In order to do

this, we present:

� A notion of domain, such that the one-point domain 1 is a domain, and F is a
functor between domains.

� A notion of order between domains with least element 1 and where every

chain of domains has a limit.

� A notion of continuous functor between domains, such that F is continuous.

Following PLOTKIN (1983), we will use the category of ω-cpo’s with embeddings

as the appropriate notion of ordered domains. Since F is a continuous functor, it

must have a least fixed point, which we will use as our definition of D.

The rest of this section will present the technical details of this construction.
We shall begin with a short reminder of some simple category t



EXAMPLES. lift : c!c

?

is a functor since we have:

� an object liftA in c

?

for each A A



The arrow eR is uniquely defined, so if e : A!B in cpoe and f : B!A inωcpoe

then:

(e� f � id; f � e = id) implies eR

= f

()

?

: ωcpoe!ωcpoe is the lifting functor with:

� A

?

in ωcpoe for A in ωcpoe.

� e

?

: A

?

!B

?

in ωcpoe for e : A!B in ωcpoe.

∆ : ωcpoe!ωcpoe2 is the diagonal functor with:

� ∆A = (A;A) in ωcpoe2 for A in ωcpoe.

� ∆ f = ( f ; f ) : ∆A!∆B in ωcpoe2 for f : A!B in ωcpoe.

(!) : ωcpoe2

!ωcpoe is the ω-continuous function space functor with:

� (A!B) in ωcpoe for (A;B) in ωcpoe.

� (e! f ) : (A!B)!(A0!B0) inωcpoe for (e; f ) : (A;B)!(A0;B0) inωcpoe2.

where e! f is defined:

(e! f )g = f �g� eR

(e! f )Rg = e�g� f R

1 is the initial object in ωcpoe. 2

DEFINITION. A cocone fei : Ai! A in ωcpoe j i in ωg is determined iff

W

fei � eR
i j i in ωg = id. 2

PROPOSITION 3. Any determined cocone is a colimit.

PROOF. Let fei : Ai ! A j i in ωg be a determined cocone of an ω-chain

fe
j
i : Ai!A j j i� j inωg. Then for any other cocone f fi : Ai!B j i inωg, define

g : A!B as:

g =

W

f fi � eR
i j i in ωg

gR

=

W

fei � f R
i j i in ωg

Then we can show that g is the unique embedding such that g � ei = fi. Thus

fei : Ai!A j i in ωg is a colimit. 2

PROPOSITION 4. Any ω-chain in ωcpoe has a determined cocone.

PROOF. Let fe
j
i : Ai!A j j i � jg be an ω-chain. An instantiation of this chain

is a function f such that:

dom f = ω f i 2 Ai e
jR
i ( f j) = f i

then define:

A = f f j f is an instantiationg

25

with the pointwise ordering. This is an ω-cpo, with join:

W

f fi j i in ωg j =
W

f fi j j i in ωg

Then define:

eia j =
�

e
j
i a if i� j

eiR
j a otherwise

eR
i f = f i

We can show that fei : Ai!A j i in ωg is a determined cocone. 2

DEFINITION. D is the determined colimit of the ω-chain:

D0 = 1

Di+1 = (Di!Di)
?

with ei : Di!D in ωcpoe given by Proposition 4. Then D is the initial fixed

point of the functor ()
?

� (!)�∆ given by Proposition 2. 2

2.6 Logical presentation of D

In Section 2.5, we gave an abstract presentation of D, using the category of ω-

cpo’s with embeddings. In this section, we provide a concrete presentation of D,
similar to SCOTT’s (1982) information systems. Following ABRAMSKY’s (1991)

domain theory in logical form we use the program logic Φ as an alternative pre-

sentation of D. In particular, we show that the ω-cpo of filters of Φ is equivalent
to D.

DEFINITION. Ψ� Φ is a filter iff:

� ω 2Ψ.

� If φ 2Ψ and ` φ� ψ then ψ 2Ψ.

� If φ;ψ

�ιΝ

ω-chath.



� ` φ� ψ iff [[φ]]� [[ψ]].

� a is ω



2. Follows from the definition of depth.

3. If a =? then:

a =? =

W

/0 =

W

fb 7! c j b 7! c� ag

Otherwise, we can show that for any d:

applyad = apply(

W

fb 7! c j b 7! c� ag)d

and so a =

W

fb 7! c j b 7! c� ag.

4. If a 7! b�
W

C for an ω-chain C �D, then:

b = apply(a 7! b)a� apply(

W

C)a =

W

fapply ca j c 2Cg

Since b is ω-compact there is a c 2C such that b� apply ca so:

a 7!b� a 7!apply ca� c

Thus a 7!b is ω-compact.

5. If a 7! b�
W

A for a finite set A�D, then:

b = apply(a 7!b)a� apply(

W

A)a =

W

fapply ca j c 2 Ag

Since b is prime, there is a c 2 A such that b





) νx :Γ ` λx :M : ψi!χi (!i)

) Γ ` λx :M : ψi!χi (�)

Thus by (^i) and (�), Γ ` λx :M : φ. 2

This has tied together the denotational and proof theoretic presentations of the

logic, and we can start to link these with the operational presentation. To begin
with, we show that the denotational semantics respects the operational semantics

(following BARENDREGT’s definition of λ-theory



(M vD N)M vS N) For any Γ and φ, if M vD N then:

Γ `M : φ

) [[φ]]� [[M]][[Γ]] (Propn 18)

) [[φ]]� [[N]][[Γ]] (Hypothesis)

) Γ `M : φ (Propn 18)

Thus if M vD N then M vS N.

(M vS N)M vD N) For any σ, if M vS N then:

[[M]]σ

=

W

f[[φ]] j [[



� recD in M is a recursive declaration of D in M.



EXAMPLES.

� x := !M;



The application of M to itself, with sharing can be drawn:

x := !u@v;

u := !∇z;

v := ?∇z;

z := ?M �

�	

@

@R
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DEFINITION. 7! is given by axioms:

(build) x := !(recD in M) 7! localD in (x := !M)

(∇trav) x := !∇y;y := ?M 7! x := !∇y;y := !M

(@trav) x := !y@z;y := ?M 7! x := !y@z;y := !M

(_trav) x := !y_z;y := ?M 7! x := !y_z;y := !M

(∇upd) x := !∇y;y := !λw:M 7! x := !λw:M;y := !λw:M

(@upd) x := !y@z;y := !λw:M 7! x := !M[z=w];y := !λw:M

(_upd) x := !y_z;y := !λw:M 7! x := ! I;y := !λw:M

(γ) ν(wvD) :D 7! ε
and structural rules:

(l)

D 7! E

D;F 7! E;F

(r)

D 7! E

F;D 7! F;E

(ν) D 7! E

νx :D 7! νx :E

Note that if D 7! E then rvD� rvE and wvD = wvE.

� D! E iff D�7!� E.

� D!0 E iff D� E, and D!n+1 E iff D!!n E.

� D!� E iff 9n :D!n E.

� D!�i E iff 9n� i :D!n E. 2

EXAMPLES



x := !y_z;y := ?M

7! x := !y_z;y := !M
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Note that since we are modeling lazy evaluation, we have:

x := !y@z; z := ?M

76! x := !y@z; z := !M
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This phase is called ‘spine traversal’ because there will often be a ‘spine’ of un-

tagged indirection, application, and fork nodes, which will all be tagged. For ex-

ample:

q

?λw:M

�

�	



However, the axiom for garbage collection involves graphs of arbitrary size,

and so has much larger granularity, and so less scope for concurrency. In imple-



which can be drawn graphically as:
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setX f gσx =

�

f (gσ)x if x 2 X

σx otherwise

�x f =

W

f f n

? j n in ωg

� M vD N iff [[M]]� [[N]].

� DvD E iff wvD = wvE and [[D]]� [[E]]. 2

EXAMPLES. We can show that the semantics of the ‘ogre’ term is >, since:

[[recx := !λy :∇x in ∇x]]

= [[∇x



if y satisfies ψ then:

w := !λy :w;x := !λy :w; z := !x@y;D

! w := !λy :w;x := !λy :w; z := !∇w;D

! w := !λy :w;x := !λy :w; z := !λy :w;D

which by induction satisfies z : χ. Thus:

(w := !λy :w;x := !λy :w) : φ

From this it is simple to show that (w := !λy :w) : (w : φ).

This definition depends on the notion of ‘graph extension’, which is the preorder

Dv E.

DEFINITION. Dv E iff we can find~x,~y, D0 and E 0 such that:

D� ν~x :D0 E � ν~x~y : (D0

;E 0) fvD\~y = /0

Note that v is a preorder, and that Dv E vD iff D� E. 2

We can then define the the operational interpretation of the logic.

DEFINITION. For closed declarations, j= D : ∆ is given by the axioms:

(εi) j= D : ε (ωi) j= D : (x : ω)

and structural rules:

(^i)

j= D : Γ j= D : ∆

j= D : Γ^∆ (!i)

D+x

8(z := !x@y) v E wD:

j= E : (y : φ)) j= E : (z : ψ)

j= D : (x : φ!ψ)

This can be generalized to any D by defining Γ j= D : ∆ iff:

8E : (j= D;E : ν(wvD) :Γ) implies (j= D;E : ∆)

Similarly, Γ j= M : φ iff:

8D; z : (j= (D; z := !M) : Γ) implies (j= (D; z := !M) : (z : φ))

One consequence of full abstraction is that for λ-calculus terms, this operational

definition agrees with the definition of Section 2.4. 2

We can define a proof system for Lam as we did for Λ

P

. This uses the same propo-

sitions, and will have judgements of the form Γ `M : φ and Γ `D : ∆. The main

difference between the proof system for Lam and that of Λ

P

is the proof system
for recursive declarations. Note that:

� The proof rules (!) and



only difficult case is when φ = ψ!χ:

(!)

(Indn)

...



∂[[D;E]] = (X [X 0

;Y [Y 0;Z[Z0; f [ f 0)

∂[[νx :D]] = (X nfxg;Y [fxg;Z; f )

where ∂[[D]] = (X ;Y;Z; f ), ∂[[E]] = (X 0

;Y 0;Z0; f 0) and X , Y , X 0 and Y 0 are all dis-
joint. 2

Then we can show that this semantics is fully abstract for �.

P



For example, we will allow the reduction:
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Note that we need three axioms to replace the axiom:

(x := !y_z;y := !λw:M) 7! (x := ! I;y := !λw:M)

since we have to consider the cases when x = z, y = z, and x 6= z 6= y.

DEFINITION. 7!c is given by axioms:

(build) x := !(recD in M) 7!c recD in (x := !M)

(∇trav) x := !∇y;y := ?M 7!c x := !∇y;y := !M

(@trav) x := !y@z;y := ?M 7!c x := !y@z;y := !M

(_trav) x := !y_z;y := ?M 7!c x := !y_z;y := !M

(∇upd) x := !∇y;y := !λw:M 7!c x := !λw:M;y := !λw:M

(@upd) x := !y@z;y := !λw:M 7!c x := !M[z=w];y := !λw:M

(_upda) x := !y_z;y := !λw:M; z := !N 7!c x := ! I;y := !λw:M; z := !N

(_updb) x := !y_y;y := !λw:M 7!c x := ! I;y := !λw:M

(_updc) x := !y_x;y := !λw:M 7!c x := ! I;y := !λw:M

and structural rules:

(l)

D 7!c E

D;F 7!c E;F

(r)

D

Fr

;

r;7!





PROPOSITION 27. For closed D:

1. �? is a partial order.

2. D�?� E iff D��? E.

3. If D!γ!c E then D!c!γ E.

4. If D�?!c E then D!�1
c �? E.

5. If D�?!γ E then D!γ�? E.

6. If D! E then D!�

c!

�

γ�? E.

7. If D!� E then D!�

c!

�

γ�? E.

PROOF.

1. By definition, �? is reflexive. By induction on the proof of D �? E, we can
show that if D�? E �? D then D =



!c ν~x~y : (F 0

; z := !M;G) (_trav)

!c ν~x~y : (F 0

; z := !M;H) (_upda)

� ν~x : (ν~y : (F 0; z := !M);H) (νmig)

�? ν~x : (ν~y : (F 0; z := ?M);H) (Defn of�?)

� ν~x : (F;H) (Eqn 9)

� E (Eqn 7)

Thus, D!�

c!

�

γ�? E.

(others) The other axioms are axioms of 7!c, and so D!�

c!

�

γ�? E.

7. Let D!n E, and proceed by induction on n:

(



5. If D� (D0

;x := !λw:M)!c E then E 0 � (E 0;x := !λw:M).

6. If D� (D0

;x := ?M)!c E then E � (D0

;x := !M)

or E � (E 0;x :=



Then by Proposition 30.1 either:

� we have:

H � (G; localK in x := !M) (19)

in which case:

E

� ν~x : (G;J) (Eqn 16)

� ν~x : (G; localK in x := !M) (Eqn 18)

� ν~x :H (Eqn 19)

� F (Eqn 17)

� or we have:

H � (L;x := ! recK in M (20)

and for any N:

(G;x :



reduction is needed in order to evaluate x



1. If D ` x� y then D;E ` x� y.

2. If νx :D ` y� z then D ` y� z.

3. If x 6= y 6= z, w is fresh and D ` x � z then [w=y]D[w=y] ` x� z.

PROOF. Inductions on the proof of�. 2

Then we can show that D!x E iff there is a reduction on the x-spine of D:

PROPOSITION 35. D!x E iff D� ν~x :F, E � ν~x :G, F!y G is an axiom, and

F ` x � y.

PROOF.

) An induction on the proof of D!x E.

( An induction on the proof of F ` x� y. 2

PROPOSITION 36. If D ` x� y and D!y E then D!x E.

PROOF. By Proposition 35, D � ν~x :F, E � ν~x :G, F ` y � z and F !z G is an
axiom. Then by Proposition 34.2, F ` x � y, so by (trans), F ` x � z, so by

Proposition 35, D!x E. 2

PROPOSITION 37.

1. If D� (D0

;D00

), D ` x� z, x 2 wvD0 and z 2 wvD00

then 9y 2 rvD0

\wvD00

:D0

` x� y.

2. If D� (D0

;D00

), D ` x� z, and x; z 2 wvD0 then D0

` x� z

or 9y 2 rvD0

\wvD00

:D0

` x� y.

PROOF. An induction on the proof of D ` x� z.

1. The only difficult cases are (ν) and (trans). In the case of (ν) we have:

D = νw:E E ` x� z x 6= w 6= z

Then by Proposition 22.3 either:

� D0

� νw:E 0 and E � (E 0;D00

) so by induction we can find

y 2 rvE 0\wvD00 such that E 0 ` x� y. Then y 2 wvD00 so y 6= w, so
y 2 rvD0

\wvD00 and by (ν) D0

` x� y.

� D00

� νw:E 00 and E � (D0

;E 00) so by induction we can find

y 2 rvD0

\wvE 00 such that D0

` x� y. Then y 2 rvD0 so y 6= w, so
y 2 rvD0

\wvD00.

In the case of (trans) we have:

D ` x � w� z

Then either:

� w 2 wvD0 so by induction on Part 2 either:
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� D0

` x � w, and by induction we can find y 2 rvD0

\wvD00 such that

D0

` w� y, so by (trans), D0

` x� y.

� 9y 2 rvD0

\wvD00

:D0

` x� y.

� w 2 wvD00 so by induction we can find y 2 rvD0

\wvD00 such that
D0

` x� y.

The other cases are simpler.

2. Is similar. 2

DEFINITION.

� x is tagged in x := !M.

� x is untagged in x := ?M.

� x is (un)tagged in D;E iff x is (un)tagged in D or E.

� x is (un)tagged in νy :D iff x 6= y and x is (un)tagged in D. 2

PROPOSITION 38. For closed D:

1. If D!c (E

0

;y := ?M) � E then D� (D0

;y := ?M) and D0

)



and so:

D

� ν~x : (F;G) (Eqn 22)

� ν~x : (F



� νy~w : (G0

;H) ((νmig) and (νswap))

and:

ν~w : (G0

;H)

!c ν~w : (G0

; I) (Eqn 29)

� E 0 (Eqn 31)

� or we have:

I � νy : I0 E 0 � ν~w : (G; I0)

so by analysis of each axiom that could give H 7!c I, we find that the only

possibility is (build) in which case:

D � ν~w : (G; z := ! recF in M)

E � ν~w : (G; localF in z := !M)

E 0 � ν~w : (G; I0)

νy : I0 � localF in z := !M

6. By Proposition 25.1:

D� ν~y : (G;H) E � ν~y : (G; I) H 7!c I is an axiom (32)

Then by Propositions 22.3 and 22.5 we have:

D0

� ν~y :D00

(D00

;x := !M) � (G;H)

E 0 � ν~y :E 00

(E 00;x := !M) � (G; I)

(33)

Then by Propositions 22.2 and 22.1 either:

� we have:

G� (G0

;x := !M) D00

� (G0

;H) E 00 � (G0

; I) (34)

so for any N:

D0

;x := !N

� (ν~y :D00

);x := !N (Eqn 33)

� (ν~y : (G0

;H));x := !N (Eqn 34)

7!c (ν~y : (G0

; I));x := !N (Eqn 32)

� (ν~y :E 00);x := !N (Eqn 34)

� E 0;x := !N (Eqn 33)

� or we have:

H � (H0

;x := !M) D00

� (G;H0

) I � (I0;x := !M) E 00 � (G; I0)
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and by case analysis of each axiom which could give H!c I, we find that

either:

� G;H!x G; I and so D!x E.

� For any N, H0

;x := !N! I0;x := !N,
and so D0

;x := !N! E 0;x := !N.

7. By Proposition 35:

D� ν~x :F E � ν~x :G F ` y� z F !z G is an axiom (35)

and we can α-convert so that x 62~x. Then by Proposition 22.4 either:

� we have:

~x =~yw~z D0

� ν~y~z : [x=w]F[x=w] (36)

and so:

E

� ν~x :G (Eqn 35)

� ν~yw~z :G (Eqn 36)

� νx~y~z : [x=w]G[x=w] ((α) and (νswap))

by Proposition 24.1:

[x=w]F[x=w]!z [x=w]G[x=w]

by Proposition 34.3:

[x=w]F[nx
x ] =:x

�

50.756 Tm
(!)Tj
/R15 7.53379 TE

�~x:E





� D�D



so by (∇ind), D!x E, and so D!x!c F.

� D!x E, and so D!x!c F .

(@ind) Is similar.

(_ind) Is similar. 2

PROPOSITION 40. For closed D, if x is tagged in D and D!�

c E then D!�

x!

�
:x E.

PROOF. Let D!n
c E, and proceed by induction on n.

� If n = 0 then D� E so D!�

x!

�
:x E.

� If n > 0 then D !c F !n�1
c E, and by Proposition 23.4 x is tagged in F

so by induction F !�

x!

�
:x E, so by Proposition 39 D!�

x!c!

�
:x E, and so

D!�

x!

�
:x E. 2

PROPOSITION 41. For closed D, if x is tagged in D, :



 γ ν~x : (I;ν(wvG) :G) (γ)

� ν~x :H (Eqn 53)

� E (Eqn 53)

Thus D!x γ E. 2

PROPOSITION 47. For closed D, if D! E then D+x iff E+x.

PROOF.

) If D!c E, then by Proposition 32, E+x.
If D!γ E, then by Propositions 42 and 23.4:

tagx D!x � � � !x F

#

�1
γ

tagx E





� Otherwise Fi = (xi := !Mi), and wi = ε.

Then:

� For each i such that D[~x=~z] ` x � xi, (xi := !Mi[~x=~z])!c ν~wi :Fi[~x=~z] and so

E!�

c F [~x=~z].

� Similarly, D[~y=~z]!�

c F [~y=~z].

� Let R be a ν-less D[~x=~z]-simulation such that~x R ~y. Then let R 0 be the small-

est relation containing R such that ~w~w~wi~wi R ~w~w j~w j~w. We can show R 0 is
a ν-less (G;x := !M;F1; : : :;Fn)[~x=~z]-simulation, and so F[~x=~z] `~x�~y. 2

PROPOSITION



and by (νmig):

ν~x : (D; localG in x := !M0

; localH in y := !N 0

)

� ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !M0

;y := !N 0

)

and from the definition of simulation:

ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !M0

;y := !N 0

) ` x � y

so by induction:

ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !∇y;y := !N 0

)+z (57)

and so:

ν~x : (D;x := !∇y;y := !N)

� ν~x : (D;x := !∇y;y := ! recH in N 0

) (Eqn 56)

! ν~x : (D;x := !∇y; localH in y := !N 0

) (BUILD)

 ν~x : (D; localG in ε;x := !∇y; localH in y := !N 0

) (γ)

� ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !∇y;y := !N 0

) (νmig)

and so by Equation 57 and Proposition 47:

ν~x : (D;x := !∇y;y := !N)+z

The other cases are similar.

(



?� f = ?

and so by uniformity:

�x(setXg)� f = �x(setXg)

From this it is easy to show by induction on D that [[D]] = [[D]]� f .

2. (wv[[D]]� wvD) An induction on D.

(wv[[D]]� wvD) If wv[[D]]wvD then find x 2 wvD and x 62 wv[[D]]. Then:

>

= readx� (x :=>) (Propn 54.3)

= readx� [[D]]� (x :=>) (x 62 wv[[D]])

= readx� [[��]]� (

= [[



= readx� f ( f = g� f )

If x 62 X then:

readx� (setXg)n+1

?� f

= readx� (setXg)((setXg)n

?)� f (Defn of f n)

= readx� f (Propn 54.6)

Thus (setXg)n+1

?� f � f .

Thus:

f = g� f

)

W

f(setXg)n

?� f j n in ωg � f (Above)

)

W

f(setXg)n

? j n in ωg� f � f (� is continuous)

) �x(setXg)� f � f (Defn of �x)

For example, if wv f = X , wvg =Y and X \Y =

/0 then we have by part 3:

�x(set(X [Y )( f �g)) = f ��x(set(X [Y )( f �g))

and so by the above:

�x(setX f )��x(set(X [Y)( f �g)) � �x(set(X [Y )( f �g)) (58)

Similarly:

�x(setYg)��x(set(X [Y)( f �g)) � �x(set(X [Y )( f �g)) (59)

Thus:

set(X [Y )(�x(setX f )��x(setYg))(�x(set(X [Y )( f �g)))

= �x(setX f )��x(setY g)��x(set(X [Y )( f �g)) (Propn 57.1)

� �x(setX f )��x(set(X [



If x 2 wvD then:

[[(recD in M



= [[D]]



1. Assume:

j= (D;w := !M;x := !M) : (w : ψ!χ) (67)

Then (D;w := !M;x := !M)+w so by Proposition 51.2:

(D;w := !M;x := !M)+x

For any (z := !x@y) v E w (D;w := !M;x := !M) either:

� z = w or z = x, so M = x@y, so (D;w := !M;x := !M)*x, which is a con-

tradiction.

� w 6= z 6= x, so by Proposition 22, we can find F such that:

(F;w := !M;x := !M; z := !x@y) � E (F;



PROOF.

1. An induction on φ. The only difficult case is when φ = ψ!χ.

) If j= D : (x : ψ! χ) then D+x so by Proposition 29 νw :D+x. For any

(z := !x@y)v E w (νw:D), let v be fresh, by Proposition 22, we can find
F w (z := !x@y) such that:

E � νv:F F w [v=w]D[v=w] (72)

so by Proposition 59:

j= [v=w]D[v=w] : (x : ψ!χ) (73)

and so:

j= E : (y : ψ)

) j= νv:F : (y : ψ)



� If w = x then we can find fresh~y and I such that:

H � ν~x~y : (F;G; I;w := !M; z := !w@y) (76)

so let ~w=wvG, and let v and~v be fresh. Then since j= D : (x : ψ!χ),
by Proposition 59:

ν~x : (F;v := ! recG in M)[v=w] : (v : ψ!χ) (77)

and, from the definition of v:

(z := !v@y)

v ν~x : (F[v=w];G; I;v := !(recG in M)[v=w];

w := !M[v=w]; z := !v@y)

w ν~x : (F;v := ! recG in M)[v=w]

(78)

Then:

j= H : (y : ψ)

) j= ν~x~y : (F;G; I;w := !M; z := !w@y) : (y : ψ) (Eqn 76)

) j= (F;G; I;w := !M; z := !w@y) : (y : ψ) (Propn 63)

) j= (F;G; I; [v~v=w~w]G[v~v=w~w];

v := !M;w := !M; z := !w@y) : (y : ψ) (Propn 60)

) j= (F [v=w];G; I; [v~v=w~w]G[v~v=w~w];

v := !M[v=w];w := !M[v=w]; z := !v@y) : (y : ψ) (Propn 61.5)

) j= (F [v=w];G; I;v := !(recG in M)[v=w];

w := !M[v=w]; z := !v@y) : (y : ψ) (Indn)

) j= (F [v=w];G; I;v := !(recG in M)[v=w];

w := !M[v=w]; z := !v@y) : (z : χ) (Eqns 77 and 78)

) j= H : (z : χ) (Similarly)

Thus j= E : (x : ψ!χ).

� If x 6= w 6= z then the proof is similar.

(other) If D!c E is proved without (BUILD) then we can show that:

DvD0 implies D0

!c E 0 w E

E v E 0 implies DvD0

!c E 0

Then if j= D : (x : ψ!χ) then D+x so by Proposition 32, E+x. Then for

any (z := !x@y) v F w E, we can find G such that:

F � (G; z := !x@y) (79)

Then let w be fresh, so:

(w := !x@y) v (G;w := !x@y; z := !x@y)w E
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and we can find H wD such that:

H!c F

Then:

j= F : (y : ψ)

) j= (G; z := !x@y) : (y : ψ) (Eqn 79)

) j= (G; z := !x@y;w := !x@y) : (y : ψ) (Propn 60)

) j= (H;w := !x@y) : (y : ψ) (Indn)

) j= (H;w := !x@y) : (w : χ) ( j= D : (x : ψ!χ))

) j= (G; z := !x@y;w := !x@y) : (w : χ) (Indn)

) j= (G; z := !x@y;w := !x@y) : (z : χ) (Propn 61.1)

) j= (G; z := !x@y) : (z : χ) (Propn 60)

) j= F : (z : χ) (Eqn 79)

Thus for any (z := !x@y)v F w E:

j= F : (y : ψ)) j= F : (z : χ)

so j= E : (x : ψ!χ).
The other direction is shown similarly. 2

3.11 Full abstraction

In this section, we show that the model D is fully abstract for concurrent graph
reduction. This means that concurrent graph reduction has the same fully abstract

model as leftmost-outermost reduction, and so concurrent graph reduction has ex-

actly the same computational power as leftmost-outermost reduction.
This proof follows the same structure as Section 2.7

� We show that Γ`D : ∆ iff [[∆]]� [[D]][[Γ]], thus showing that the proof system

is sound and complete for the denotational semantics. This is Proposition 66,

the graph reduction equivalent of Proposition 15.

� We then show that if Γ ` D : ∆ then Γ j= D : ∆, and that if Γ j= D : ∆ then

[[∆]]� [[D]][[Γ]]. Thus the three presentations of the logic are equivalent. This

is Proposition 69, the graph reduction equivalent of Proposition 18.

� Finally, we show that full abstraction is gained by proving the three logical

presentations to be equivalent. This is Proposition 70, the graph reduction
equivalent of Proposition 19.

Thus, ABRAMSKY and ONG’s techniques can be adapted to graph reduction.

PROPOSITION 66.

1. Γ `M : φ iff [[φ]]� [[M]][[Γ]].
2. Γ `D : ∆ iff [[∆]]� [[D]][[Γ]].
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PROOF.

SOUNDNESS ()) We have to prove the rules of Γ `M : φ and Γ `D : ∆ be

sound. For example, to prove (!), if [[∆]]� [[x := !M]][[Γ]] and [[φ]]� [[M]][[∆]]

then:

[[x : φ]]
� (x := [[M]])[[∆]] (Hypothesis)

� (x := [[M]])([[x := !M]][[Γ]]) (Hypothesis)

= [[x := !M]][[Γ]] (Propn 57.2)

The other cases are similar.

COMPLETENESS (() An induction on M and D. For example, if x 6= y and:

[[φ]]� [[x@y]][[Γ]]

then either [[φ]] =?, so ` φ = ω and so Γ ` x@y : φ, or:

[[φ]]� [[x@y]][[Γ]]

) [[φ]]� apply[[Γ(x)]][[Γ(y)]] (Defn of [[x@y]])

) [[Γ(y)!φ]]� [[Γ(x)]] (Propn 9.1)

) ` Γ(x) � Γ(y)!φ (Propn 12)

) ` Γ� x : Γ(y)!φ;y : Γ(y) (Defn of�)

) Γ ` x@y : φ ((�) x x





(z := !x@y) v E w (D;x := !λw:M)



� If j= D : (x : φ!ψ) then D+x so by Corollary 68 [[D]]σx 6= ?. Also, for

fresh y and z:

true

)



4 Conclusions

In this paper, we have investigated the relationship between the semantic notion of
full abstraction and the implementation technique of concurrent graph reduction.

We have shown that:

� Concurrent graph reduction can be given a simple operational presentation
in the style of BERRY and BOUDOL’s (1990) chemical abstract machine, and

MILNER’s (1991) polyadic π-calculus.

� The techniques of ABRAMSKY (1989) and ONG’s (1988) lazy λ-calculus can



cursive declarations, local variables or cycles. WADSWORTH also investigates the

relationship between graph reduction and the D∞ model of the untyped λ-calculus

(see (BARENDREGT, 1984) for more details), a topic which was later picked up
by LESTER (1989) and ABRAMSKY (1989) and ONG (1988).

BARANDREGT et al. There is a large body of work on term graph rewriting,

introduced by BARANDREGT et al. (1987), and surveyed by KENNAWAY et al.

(1993b) and the other papers in SLEEP et al.’s (SLEEP et al., 1993) book. Term
graphs are very similar to declarations, but are rooted, and



PURUSHOTHAMAN AND SEAMAN. Another approach to the operational se-

mantics of graph reduction is PURUSHOTHAMAN and SEAMAN’s (1992) LAZY-

PCF+SHAR, which extends PLOTKIN’s (1977) PCF with let declarations. This is
given a big-step operational semantics of the form (in our syntax):

(letD in M) + (letE in N)

This semantics is similar to ours and LAUNCHBURY’s, except that:

� LAZY-PCF+SHAR is a typed language, and has constructors and deconstruc-

tors for booleans and natural numbers.

� Since let-expressions are being used rather than rec-expressions, the seman-

tics for fixed points lose some sharing information:

(letD in letx := !(µx :M) in



Finding a proof technique that is powerful enough to show full abstraction for

concurrent graph reduction, but does not rely on long case analysis is likely to be

quite difficult.

TYPED λ-CALCULI. The proofs given in this paper are only for the untyped λ-
calculus with recursive declarations. The non-strict functional languages which

are used in practice are typed, and have type constructors and deconstructors (usu-

ally in the form of pattern-matching).
Such constructors and deconstructors could be added to the λ-calculus with

recursive declarations. For example, the product type T �U with constructors

and deconstructors:

pair : T!U! (T �U) fst : (T �U)!T snd : (T �U)!U



?, l or r. The choose function could be added to the λ-calculus with recursive

declarations as:

M ::= � � � j choosexy

D ::= � � � j o := !? j o := ! l j o := ! r

with the operational semantics given:

x := !chooseyz;y := ?M 7! x := !chooseyz;y := !M

x := !chooseyz; z := ?M 7! x := !chooseyz; z := !M

o := !?;x := !chooseyz;y := !λw:M 7! o := ! l;x := !chooseyz;y := !λw:M

o := !?;x := !chooseyz; z := !λw:M
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