
Co-Evolution of Pursuit and Evasion I:

Biological and Game-Theoretic Foundations

�

Geo�rey F. Miller

y

and Dave Cli�

Technical Report CSRP311, August 1994.

School of Cognitive and Computing Sciences

University of Sussex, Brighton BN1 9QH, U.K.

Email: geoffm@cogs.susx.ac.uk, davec@cogs.susx.ac.uk

Phone: +44 273 606755 ext. 3102

Fax: +44 273 671320

Abstract

Animals often chase each other about. These pursuit-evasion contests require the

continuous dynamical control of complex sensory-motor behavior, and give rise to

some of the most common and challenging co-evolutionary arms races in nature. This

paper argues for the importance and fruitfulness of studying pursuit-evasion scenarios

using evolutionary simulationmethods, and reviews the relevant literatures; in a com-

panion paper, our simulation methods and results will be presented. We �rst review

the biological ubiquity of pursuit-evasion contests, the protean (adaptively unpre-

dictable) behavior that often evolves in evasion strategies (e.g. when prey zig-zag to

evade predators), and the relevant neuroethology of capture by predators and escape

by prey. The di�erential game theory relevant to analyzing pursuit-evasion games

is then reviewed, including the proven optimality of mixed strategies (corresponding

to protean behavior) in many such games, and the di�culty of deriving analytical

solutions in realistically complex games. Previous work on evolving pursuit-evasion

tactics in simulation and in real robots is then reviewed, and directions for further

research are identi�ed. We conclude with some possible engineering applications and

scienti�c implications of pursuit, evasion, and their co-evolution.
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control systems that are slow, brittle, easily confused, or error-prone do not survive long

in pursuit-evasion scenarios. For these reasons, traditional arti�cial intelligence methods

may prove particularly poor as models of pursuit-evasion behaviors (imagine the famously

slow robot \Shakey" trying to evade a fast predator), and newer reactive, behavior-based,

bottom-up approaches (e.g. Braitenberg, 1984; Brooks, 1989; Beer, 1990; Maes, 1990;

Wilson, 1991) may prove particularly apt.

Third, pursuit and evasion are scienti�cally interesting, because they evolve against

one another in an ongoing, open-ended, frequency-dependent way, so pursuit-evasion con-

tests often give rise to co-evolution within or between species. Because pursuit-evasion

scenarios may be the simplest and most common cases of behavioral co-evolution, their

investigation may illuminate behavioral arms races in general (see Futuyama & Slatkin,

1983). Such sustained co-evolution reinforces all of the challenges discussed in the previ-

ous paragraph: temporary adaptive advantage is continually eroded under co-evolution as

new tactics arise. Co-evolution probably drives the evolution of both special perceptual

capacities to entrain, track, and predict animate motion, and special motor capacities to

generate complex, robust, unpredictable behavior (Miller & Freyd, 1993). Understanding

both perception and motor control may thus depend on appreciating the role of pursuit-

evasion contests in behavioral evolution. Moreover, pursuit-evasion co-evolution is the

simplest situation that can favor \protean" (adaptively unpredictable) behavior, as when

prey animals zig-zag unpredictably to escape predators (see e.g. Chance, 1957; Chance

& Russell, 1959; Driver & Humphries, 1988). Further, because e�ective pursuit may of-

ten require prediction and `mind-reading', while e�ective evasion may require the use of

unpredictable or deceptive tactics (Driver & Humphries, 1988), such contests raise issues

of signaling, communication, and tactical deception (Dawkins & Krebs, 1978; Harper,

1993; Krebs & Dawkins, 1984), and may provide a natural bridge from the evolution

of basic sensory-motor control to the evolution of social psychology and `Machiavellian

intelligence' (Byrne & Whiten, 1988; Miller, 1993). Some complex social, sexual, commu-

nicative, and political behavior could be viewed as pursuit-evasion contests carried out

on more abstract levels, with respect to state spaces involving social information, status,

resources, kinship, and sexual relationships.

Fourth, pursuit-evasion contests have received serious attention from at least three

scienti�c disciplines: behavioral biology, neuroethology, and game theory. Animal be-

havior studies have revealed the ubiquity and importance of pursuit-evasion tactics, anti-

predator behaviors, and �ghting skills (Driver & Humphries, 1988; Endler, 1991). The

centrality of such behaviors is revealed by the fact that pursuit-evasion games are the

most common form of animal play behavior (Fagen, 1981; Symons, 1978); such play facil-

itates learning sensory-motor coordination through \developmental arms races" between

play-mates. Neuroethology (e.g. Camhi, 1984; Hoyle, 1984) has spent much e�ort under-

standing neural systems for pursuit (\approach") and evasion (\avoidance"), including:

explorations of speci�c circuits for rapid startle and escape behaviors (e.g. Camhi, 1988;

Krasne & Wine, 1987; Eaton, 1984); the role of the (very fast) tecto-spinal pathway in

mediating the pursuit behavior of vertebrate predators such as salamanders, frogs, cats,

and owls (e.g. Alstermark, Gorska, & et al, 1987; Meredith, Wallace, & Stein, 1992;

Westby, Keay, Redgrave, Dean, & Bannister, 1990); and the speci�c attunement of sen-
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sory cells to patterns of animate motion relevant to pursuit and evasion (e.g. Arbib &

Cobas, 1991; Ewert, 1987; Nakayama, 1985; Perrett, Harries, Mistlin, & Chitty, 1990).

The possibilities for computational neuroethology (Beer, 1990; Cli�, 1991) and behavioral

modelling in this area are obvious. Game theorists have also studied pursuit-evasion con-

tests intensely for several decades, because of their importance in tactical air combat (e.g.

telling pilots how to evade guided missiles) and other military applications (see Yavin &

Pachter, 1987). \Di�erential game theory" (Isaacs, 1965) has developed a vocabulary for

analyzing the structure and complexity of pursuit-evasion games, and a number of formal

results concerning optimal strategies for particular pursuit-evasion games. We will review

the relevant animal behavior studies, neuroethology, and game theory at length in the

following sections.

Fifth, the study of pursuit-evasion behaviors has many scienti�c implications and prac-

tical applications.



of the environment insofar as their potential �tness e�ects exist regardless of whether the

organism facing them knows or cares of their existence, but FAs are relational insofar

as their biological signi�cance exists only in relation to organisms with particular modes

of survival and reproduction (e.g. what is food to one species is poison to another in a

perfectly objective and yet perfectly relational way). Most FAs are spatially localized

(at some scale), and only impose



animal escape behavior in asymmetric pursuit-evasion contests generally breaks down

into three phases: (1) directional eeing if a predator (or other negative, mobile FA)

is threatening but still distant; (2) erratic zig-zagging if the predator begins catching

up; and (3) convulsive `death-throes' if caught. Directional eeing is about as simple as

directional chasing, but the last two tactics, zig-zagging and convulsing, are examples of

a more interesting type: protean behavior.

Animals generally evolve perceptual and cognitive capacities to entrain, track, and

predict the movements of other biologically-relevant animals such as prey, predators, and

potential mates (Camhi, 1984; Miller & Freyd, 1993). Such predictive abilities mean

that unpredictable behavior will inevitably be favored in many natural pursuit-evasion

situations. For example, if a rabbit eeing from a fox always chose the single apparently

shortest escape route, the very consistency of its behavior would make its escape route

more predictable to the fox, its body more likely to be eaten, its genes less likely to

replicate, and its �tness lower. Predictability is punished by hostile animals capable of

prediction. This is the basic logic behind the theory of protean behavior: the e�ective-

ness of almost any behavioral tactic can be enhanced by endowing it with characteristics

that cannot be predicted by an evolutionary opponent (Driver & Humphries, 1988). An

arms race between perceptual capacities for predicting animate motion, and motor capac-

ities for generating protean behavior, will generally result from evolutionarily recurring

pursuit-evasion contests (Miller & Freyd, 1993).

Along with directional eeing, protean escape behaviors are probably the most widespread

and successful of all behavioral anti-predator tactics, being used by virtually all mobile

animals on land, under water, and in the air. Driver and Humphries (Driver & Humphries,

1988) review examples from hundreds of species, including insects, �sh, birds, and mam-

mals. Human proteanism is obvious in any competitive sport: good boxers use unpre-

dictable feints and attacks, and good rugby players use unpredictable jinks. Predators

can also exploit unpredictability to confuse prey, as when weasels do \crazy dances" to

ba�e the voles that they stalk, or when Australian aborigine hunters do 1 00u9m999.756(x-16000.6(1 0t9c0)�801 0 Td
r
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behaviors is also revealed in their speed. The neural systems for initiating protean escape

are astonishingly fast: a cricket can detect the sound of a predator and e�ectively alter

the rhythmic motor signals to its wings to initiate erratic escape in under 60 milliseconds

(May, 1991).

Even if erratic zig-zagging fails, another form of proteanism, convulsive behavior,

may succeed. Sudden, unpredictable, vigorous \death-throes", alternating with puzzling

passivity (\playing dead") is often e�ective at allowing prey to escape from predators

(Driver & Humphries, 1988). Indeed, the adaptive signi�cance of convulsive behavior

was �rst recognized by M. R. A. Chance (Chance, 1957; Chance & Russell, 1959), who

initiated the study of protean behavior with his analysis of \audiogenic seizures" in labo-

ratory rats. (When lab technicians accidentally jangle their keys, lab rats have a peculiar

tendency to go into convulsions, but if the rats are provided with hiding places in their

cages, they simply run and hide when keys are jangled; thus, the convulsions are facul-

tative defensive behaviors rather than pathological oddities.) Adaptive convulsions can

also occur in more abstract state-spaces, as when cuttle�sh and octopi undergo rapid

color changes to defeat the search images (perceptual expectations) of their predators.

Additional confusion e�ects may arise from group ocking and mobbing behaviors that

include unpredictable movements, complex motion dynamics, and confusing coloration

(zebra stripes or shiny scales on �sh); Werner and Dyer (1993) found such confusion

e�ects when simulating the evolution of herding behavior by prey under predation pres-

sure. Unpredictability can also be exploited by divergence between individuals, as when

animals within a species evolve \aspect diversity" (polymorphic coloration or behavior)

through \apostatic selection" (Clarke, 1962) that favors low-frequency traits (e.g. be-

cause predators' use of search images penalizes common appearances). Indeed, apostatic

selection may be a general feature of pursuit-evasion arms races: novel and unexpected

tactics may be favored at a variety of levels.

Co-evolution itself can be viewed as a pursuit-evasion contest, operating between

lineages rather than between individuals. From this perspective, sexual recombination

makes sense as a protean strategy which unpredictably mixes up genes so as to \confuse"

pathogens (Hamilton, Axelrod, & Tanese, 1990). Indeed, this proteanism argument is

one of the leading explanations for the the evolution of sex (Ridley, 1993). Despite

proteanism's importance, it has been long overlooked in biology, because complex order

rather than useful chaos was assumed to be the de�ning feature of Darwinian adaptations

(see Miller, 1993).

2.3 The neuroethology of pursuit and evasion

The study of fast pathways for escape and attack forms is one of the major successes of

neuroethology (see Beer, Ritzmann, & McKenna, 1993; Camhi, 1984; Ewert, 1980; Ewert,

Capranica, & Ingle, 1983; Guthrie, 1980; Kandel, 1976; Hoyle, 1984; Huber & Markl,

1983; Roeder, 1967). Neuroethologists like to study neural circuits for such behaviors

because the relevant neurons are so large, the axons are so thick, the circuits are so easy

to identify, and the behaviors are so fast, robust, and well-tuned (e.g. see Roeder, 1948;

Eaton, 1984). In the tube worm Myxicola infundibulum for example, most axons (nerve

�bers) are less than 5 �m in diameter, but the median giant �ber for escape can reach 1700
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�m in diameter, occupying most of the cross-section of the nerve cord (Guthrie, 1980).

Unusually in this case, methodological convenience reects adaptive importance: large,

fast neurons arranged in reliably wired circuits make not only easy work for the scientists,

but adaptive sense for the animals. Although circuits for fast attack and escape are

probably di�erent from those used for sustained pursuit and evasion, the neuroethology

of the former illustrates some relevant principles of speed, robustness, co-evolution, and

adaptive specialization.

1

2.3.1 Escape reexes

Escape circuits are among the best-studied systems in neuroethology (see Eaton, 1984).

Unexpected stimuli often provoke startle, escape, or withdrawal in animals, and these

reexes are generally mediated by specialized `fast pathways' (Guthrie, 1980). As far

back as 1836, Ehrenberg had identi�ed very large cells in the ventral nerve cords of

lobsters and cray�sh which were later shown to mediate their escape behaviors. Par-

ticularly well-understood are the quick withdrawl of the worm's head, the tail-ip es-

cape of the cray�sh, the escape turn of the cockroach, and the sudden dart of the �sh.

Aside from whole-body escape, animals with limbs usually have specialized circuits for

limb-withdrawl from painful or threatening things. Fast pathways generally use a few

large neurons with polarized inputs, long, thick, heavily insulated, low-resistance axons,

widely distributed outputs, and electrical rather than chemical synapses. Such neural

adaptations permit conduction velocities a couple orders of magnitude faster than nor-

mal. Escape reexes also recruit attention, increase activation, and release hormones, in

preparation for sustained evasion if necessary.

Even in colenterates such as sea anemones and jelly�sh, there appear to be separate

fast pathways for withdrawl reexes (Guthrie, 1980; MacFarlane, 1969). Similar circuits

for gill-withdrawl in sea slugs (Aplysia) have been studied by Kandel (1976). The escape-

reex nerve �bers (`third-order giant �bers') of the squid Loligo are so thick (700 �m) that

they have been widely used in studies of the ionic mechanisms of nerve-�ber conduction.

The common earthworm Lumbricus has an escape reex mediated by medial, lateral,

and segmental giant �bers and by giant motor neurons, which contact longitudinal body

muscles to withdraw the head from danger. The medial giant �bers can attain conduction

velocities of up to 45 meters per second, as fast as the myelinated escape-reex �bers of

frogs and �sh (Guthrie, 1980). Darwin noted that the worm's escape reex rapidly

habituates to light or touch, and shows a higher threshold for activation during active

locomotion.

The American cockroach Periplaneta americana escapes from toad predators (such as

Bufo marinus) by sensing toad-induced air accelerations with their anal cerci (rear-facing

sense organs), turning from the predator, and running away (see chapter 4 of (Camhi,

1984), (see also Camhi, 1980). The sedentary toads generally wait for insects to walk by

before striking with their tongues, so a single brief escape su�ces; there is rarely sustained

pursuit. The cockroach's seven pairs of giant interneurons (GI) mediate the escape behav-

1
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ior, which averages an extremely fast 41 milliseconds (ms) latency (Plummer & Camhi,

1981), but which can occur in an astonishing 11 ms in response to a stronger-than-normal

air stimulus (Camhi & Nolen, 1981). The hundreds of wind-receptive hairs on the cerci

are directionally tuned and several of the giant interneurons code for predator direction

to guide the escape turning behavior (Dowd & Comer, 1988; Liebenthal, Uhlmann, &

Camhi, 1994; Westin, Langberg, & Camhi, 1977). This direction information triggers

consistent changes in interleg coordination and turning, which have been analyzed with

high-speed video, (Camhi & Levy, 1988; Nye & Ritzmann, 1992). Under certain condi-

tions, the same giant interneurons that trigger escape running can trigger escape ying

instead (Ritzmann, Tobias, & Fourtner, 1980). The entire system is essentially innate,

hard-wired, and fully functional in hatchlings, though there is some plasticity to compen-

sate for injury to various components of the system (see chapter 4 of Camhi, 1984). The

cockroach's escape system works much like a Braitenberg (1984) vehicle to implement

a very rapid predator-avoidance, and could provide a model for further simulation and

robotics work.

The escape circuits of the American cray�sh Procambarus clarkii have also been well-

studied (Krasne & Wine, 1987; Edwards, 1991; Olson & Krasne, 1981; Wiersma, 1947)

(see also chapter 8 of Camhi, 1984). This animal lives in streams, eats detritus, and is

attacked by various large �sh. Touches to the cray�sh's rear will trigger an abdominal

exion mediated by lateral giant interneurons that somersaults the animal upward and

forward; touches to the front will trigger a di�erent kind of abdominal exion or `tailip'

mediated by medial giant interneurons that shoots the animal backwards (Wine & Krasne,

1972). In each case, the giant interneurons have rectifying electrical synapses onto large

(F1) motor neurons, which, in conjunction with `segmental giant' cells, activate `fast exor

muscles'. The escape is an all-or-nothing, highly stereotyped response, which cancels

out all other ongoing locomotor activity, requires the coordination of muscles in several

abdominal segments, and begins within 20 ms of stimulation. The circuitry underlying

this escape behavior has been studied in great detail (Krasne & Wine, 1987; Olson &

Krasne, 1981); Stork, Jackson, and Walker (1992) have simulated its evolution from

swimming locomotion circuits.

In most teleosts (body �shes), Mauthner cells of the reticulospinal network (Diamond,

1971) mediate a two-stage escape called a `C-start': turn rapidly, then accelerate axially

(Eaton & Emberley, 1991). Within 100 ms, a C-starting �sh will have moved around

one body length away from the threatening stimulus, and will be pointed in roughly the

right direction for further evasion. Rapid escape is especially important for �sh attacked

by plunge-diving birds such as gannets and king�shers (Guthrie, 1980), whose appear-

ance is unpredictable, rapid, and lethal. The Mauthner cells as studied in the gold�sh

Carassius auratus guide the basic decision to turn left or right during escape; the exact

escape heading is modulated by parallel circuits to produce variations from 15 to 135

degrees change in orientation (Eaton, Didomenico, & Nizzanov, 1988a, 1988b; Foreman

& Eaton, 1993). The C-start is fast (initiated within 10 ms), highly ballistic, and is not

corrected for threat location once initiated; however, �sh seem to avoid facing towards

static obstacles during C-starts, so C-starts may be modulated by some environmental

information (Eaton & Emberley, 1991). Although Mauthner cells (M-cells) are impor-
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tant in triggering C-starts, (Nissanov, Eaton, & Didomenico, 1990) found that M-cell

stimulation alone produces a much weaker and less variable C-start. The M-cells seem to

determine an initial left-or-right direction of response and a rough stage-1 escape angle;

a second group of neurons �res later and modulates the onset time and direction of the

stage-2 swimming behavior. Interestingly, Mauthners have also been





(rather than simple attack and escape) has been the work by Kenneth D. Roeder, Asher

E. Treat, and their colleagues and followers on interactions between bats and moths (see

e.g.





state-conditions, then the optimal pursuit and evasion strategies can be found by applying

the tenet of transition.

Isaacs' ideas have proven enormously fruitful (see Basar & Olsder, 1982; Grote, 1975;

Isaacs, 1965; Yavin & Pachter, 1987), and initiated a sort of Cold War arms race between

American and Russian game theorists concerned with applications



3.2 The optimality of mixed strategies

The key to formal analysis in game theory is for games to be reduced from descriptive

form (e.g. rules and heuristics) or \extensive form" (i.e. decision-tree form) to \normal

form" (i.e. a



optimal strategies for both pursuer and evader are also mixed. Forte and Shinar (e.g.

Forte & Shinar, 1988, 1989; Shinar, Forte, & Kantor, 1992) have shown that in aerial

combat scenarios, mixed strategies yield much better performance than any previously

known guidance law, and did so for both pursuers and evaders. Moreover, Bernhard

and Colomb (1988) showed that the use of mixed strategies by both players can be op-

timal even when only one player has incomplete information. Other results by Bugnon

and Mohler (1988), Imado (1993), and Linder (1991) also illustrate the utility of mixed

strategies in pursuit-evasion games. Indeed, some aircraft use systems for \electronic

jinking" (Forte & Shinar, 1988) to generate unpredictable ight paths, by analogy to

gazelles jinking erratically to evade a predator. Such game-theoretic results support the



non-zero-sum games; (5) the information structure, with games of complete information

much simpler than games of incomplete information. Moreover, in di�erential games with

continuous dynamics, the complexity and noisiness of the dynamics has a major inuence

on the tractability of the game. Anything that complicates the di�erential state equa-

tions complicates the game analysis. Finally, formal application of game theory requires

the complete speci�cation of a strategy space. Such a complete speci�cation may not

be possible if the strategies are emergent properties of human heuristics, animal brains,

or evolved robot control systems, and if the emergent strategies can vary continuously

along a number of dimensions, thereby making the game di�cult to represent in exten-

sive (decision-tree) form or normal (payo� matrix) form. These problems suggest that

di�erential pursuit-evasion games are di�cult to analyze even under the best circum-

stances, and that the introduction of realistic complexity renders most of them formally

intractable.

To avoid these complexities, di�erential game theory usually assumes that the pursuit-

evasion game is one of perfect information between two players with �xed and pre-

determined roles (one \pursuer" and one \evader"), deterministic dynamics and constant

speeds, and a zero-sum payo� structure. Mathematically adept researchers can relax one



terms \perfect" and \imperfect" information conate the objective information structure

of the game (e.g. the state-information available in the world) with the sensory and

information-processing capacities of the players. If the latter are limited, then confusion,

uncertainty, deception, and protean behavior may prove relevant even if the objective

information structure of the game is \perfect". The great size and speed of escape circuits

and muscles in many animals, as reviewed in the previous section on neuroethology,

suggests that the speed of both neural processing and motor movement has been under

intense selection in pursuit-evasion contests.

In recognition of these problems, some game theorists have recently shifted to numer-

ical and simulation methods to derive near-optimal strategies for more complex pursuit-

evasion games (e.g. Jarmark, 1987; Moritz, Polis, & Well, 1987; Rodin, Lirov, Mittnik,

McElhaney, & Wilbur, 1987; Tolwinski, 1989). For example, Rodin et al. (1987) used

arti�cial intelligence (AI) methods to simulate players in an air combat maneuvering

scenario. Each player derives tactical maneuvers using a world-model based on sensor

inputs, an inference engine linked to a database



items, or other goal objects. Much of the work on simulation of collective behavior

involves dynamical interactions with other agents that may be similar to the those arising

in pursuit-evasion contests. For example, the cooperative behaviors of following, ocking,

and aggregation are similar to pursuit behaviors; others such as disperson and collision-

avoidance are more similar to evasion behaviors (e.g. Mataric, 1993). (But note that

selection for cooperation rarely favors deception or protean behavior.)

Previous simulation work has usually examined the origins and e�ects of pursuit-

evasion tactics with neither player evolving or with one player evolving; these will be



squad car pursues a slower pedestrian evader on a discrete grid. Most relevantly, Koza

(1991) used genetic programming to evolve Lisp S-expression controllers for both players

in a di�erential



Individuals from two species played a competitive game where each player attempts to

capture a cube and keep it from the opponent. The simulations used realistic physics

with gravity, collisions, friction, and momentum. A fascinating variety of tactics evolved

for falling, crawling, rolling, and reaching towards the cube, for blocking or pushing away

opponents, and for covering or wrapping securely around the cube. This work shows

the feasibility of co-evolving complex and diverse behavioral tactics in simulations with

realistic physics and open-ended body and brain development methods. Sims' system

could be easily extended to studying pursuit-evasion games, since it has already been

used to evolve walking, jumping, and swimming capacities (Sims, 1994b).

Other simulation work has evolved forms of pursuit and evasion, or approach and

avoidance, without explicitly selecting for them. Yeager's (1994) \PolyWorld" system

managed to evolve some simple pursuit-evasion tactics in simulated creatures controlled

by neural networks, including running away or �ghting back when attacked, and following

other creatures in order to attack them. Although not very sophisticated, these behav-

iors did evolve simply through the ecological interactions such as predation that were

permitted in PolyWorld, without any explicit selection for pursuit or evasion abilities.

Yeager's work demonstrates not only that pursuit-evasion contests emerge spontaneously

given mobile creatures with conicts of interest, but also that genetically encoded neural

networks can evolve to generate adaptive pursuit and evasion behaviors in such contests.

4.3 Pursuit and Evasion by Robots

There is a huge literature on mobile robot control, largely focused on problems of nav-

igation and path-following in unrealistically friendly environments free of anything that

requires sustained pursuit or protean evasion (e.g. Brooks, 1989; Cli� et al., 1993; Har-

vey, Husbands, & Cli�, 1994). Even work on avoiding moving obstacles (e.g. the asteroid

avoidance problem (Latombe, 1991) assumes that the obstacles are following predictable

courses, which allows long-term path-planning (Canny, 1987; Tychonievich, Zaret, Man-



agression

2

try to push one another outside the boundaries of a circular pad, under either

radio control or autonomous control. Robot Sumo is a symmetric pursuit-evasion game

in which each agent strives for a more central position and for a better application of a

centrifugal force vector to the other.

Arkin, Carter, and MacKenzie (1993) reviewed previous work on how robots can

avoid moving obstacles, and developed motor schemas for dodging and escape in their

reactive mobile robot. Dodging avoids ballistic projectiles by side-stepping; escapingside-stepping;



mal distribution wrapped around a circle, with a null mean corresponding to forwards

movement. Varying the step-length and the variance of the direction-change distribution

results in changes of a formal measure of movement \sinuosity" S , which can in turn

be used to calculate an expected di�usion path length for foraging. Optimal sinuosity

values can evolve for optimal foraging in environments with di�erent food distributions.

Although Benhamou and Bovet (1989) did not discuss the utility of this sort of move-

ment unpredictability in pursuit and evasion, their sinuosity measure, or other similar

measures, could be useful in analyzing the movement dynamics of pursuing and evading

animals. Killeen (1992) has also developed a framework for the dynamical analysis of

animate motion based on �elds of approach and avoidance vectors.

Other simulation work has shown the utility of co-evolution in evolving strategies for

game-like interactions. Work by Hillis (1990) on the co-evolution of sorting strategies and

test sets can be viewed as an abstract version of a one-play pursuit-evasion contest, in

which the sorting strategies `pursue' optimal sorts while the test sets `evade' the strengths

of particular sorting algorithms. Co-evolution of strategies for the simple and iterated

prisoner's dilemma has been particularly well-studied, e.g. by Axelrod (1989), J. H. Miller

(1989), and Nowak and colleagues (1992, 1992). Co-evolution has also been simulated

successfully in Holland's (1992) Echo system, Koza's (1991, 1992) genetic programming

research, Ray's (1992) Tierra system, Werner and Dyer's (1993) Bioland system, and

Yeager's (1994) Polyworld. Angeline and Pollack (1993) demonstrated the utility of co-

evolution in genetic algorithms for solving complex problems. Chapter 6 of Kau�man

(1993) explores the dynamics of co-evolution in great detail using simulation on N-K

�tness landscapes.

4.5 Directions for Further Research

This work on co-evolution, along with Koza's demonstration of entropy-driven evolution

through selection for randomness, and previous research on evolution of pursuit and

evasion strategies, gave us hope that a co-evolutionary pursuit-evasion scenario could lead

to the evolution of protean behaviors. In the companion paper (Cli� & Miller, 1994), we

review our simulation methods and results, in which a genetic algorithm evolves pursuit

and evasion strategies implemented as dynamical neural networks in simulated robots.

Simple demonstrations that e�ective pursuit and evasion abilities can evolve in sim-

ulation will not prove of much scienti�c interest (although they may have important en-

gineering applications.) We already know from neuroethology and animal behavior that

pursuit-evasion contests result in exquisitely adapted sensors, e�ectors, neural circuits,

and behaviors. To go beyond this, we must address develop and test speci�c hypothe-

ses about the co-evolutionary dynamics of pursuit-evasion contests, the typical neural

mechanisms underlying pursuit-evasion behaviors, the trade-o�s between pursuit-evasion

capacities and other behavioral capacities, and so forth. For example, researchers could

develop hypotheses about variables that might inuence the evolution of pursuit-evasion

behaviors, manipulate these variables in simulation, and observe the results using rele-

vant measurement tools. In our work, we are currently manipulating the relative physical

speed and the relative neural processing speed of pursuers versus evaders, to explore

where in this 2D space of parameters various sorts of behaviors (such as dodging, feint-
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5 Applications and Implications

By pursuing rather than evading the complexities of pursuit-evasion contests, we



For example, the debate in adaptive behavior research over representational versus

dynamical approaches to animal cognition might be illuminated by closer study of pursuit

and evasion circuits. Many biologists have cited predator-prey interactions to argue for

the special attunement of perceptual systems and internal representations to biologically

relevant stimuli and situations; others have cited such interactions to argue for the im-

portance of robust dynamical control. Miller and Freyd (1993) saw no necessary conict

between these positions, and have suggested that pursuit-evasion contests demand `dy-

namic mental representations' (Freyd, 1987) that have both a dynamical structure and a

representational function.



Implications also arise for our understanding of the general relationship between

agents and environments. For those seeking a general theory of environmental complex-

ity (e.g. Wilson, 1991; Todd & Wilson, 1993), the addition of animate agents capable of

unpredictable pursuit and evasion in the environment represents a signi�cant conceptual

challenge. For example, an environment that contains creatures with continuous-time

dynamical noisy recurrent networks as their control systems would be di�cult to model

as an environmental �nite state machine, as proposed in (Wilson, 1991). As in sexual

selection (Miller, 1993; Miller & Todd, 1993) and other forms of \psychological selection"

(Miller, 1993; Miller & Freyd, 1993), pursuit-evasion contests break down the distinction

between environment complexity and agent complexity, because agents become the most

important selective forces in each other's environments.

6 Conclusions

Pursuit and evasion behaviors are common because conicts of interest over approach and

avoidance are common, and they99.654(0.32(oidane)Tj
18.7199 0 Td
(common,)TTJ
164.69 0 0.en)999.349(ecause)-11999.7(01 0 0.en)999.l dynamicalspac0398 032d
(1991).).654(trol)-14999(uous-time)]TJ
-345.12 17-14
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