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1 Introduction

1.1 A Short Historical Perspective



(from ten light sensors spaced evenly around the robot (see below)) presented at each time

phase.

Indeed, much of the impetus for research in this area comes from the �rmly held

belief that, as the tasks required of robots become increasingly more complex, it will be

increasingly infeasible to hand-design robots to perform them

2

. In as much as, coupled

with suitably chosen selective pressures on breeding (represented as a �tness function,

often over time), a GA allows the problem to seek its own solution (the solution is, in this

sense, emergent from the system created) the human programmer is freed from the task

of designing the solution and can turn his attention to creating the right environmental

pressures (�nding the right �tness function) and the right encoding system (the way in

which, for example in this case, the neural network is represented on the genome (see

section below on encoding the network)) in which progressively better solutions will be

found. This is, in itself, a di�cult task, but is orders of magnitude simpler than having to

hard-wire the robots.

Part I

Genetic Algorithms

3 Standard Methods Employed by Genetic Algorithms

3.1 Common Genetic Operators

3.1.1 Crossover

The most common form employed, crossover consists of combining elements from one

genome with those from another to produce an o�spring. The most common method

is single-point crossover though multiple-point crossovers are sometimes employed. The

method is as follows:

1. Take two parent genomes P1 and P2 of �xed length l and divide them at point x

along the genome where x is a random number between 1 and l-1

|

P1 01110101101000101011|011000101001010

|

P2



3. Choose one of O1 and O2 to be the o�spring of P1 and P2; in the GA I employ

(see





optimisation. This proof was important because it showed, for these blocks, a remarkably

large amount of search space could be combed in relatively few genetic operations on the

genome population.

However, many areas of GA research defy mathematical formalism. There is much

that is unpredictable and often heuristic, rules-of-thumb are all that is available to guide

the development of new GAs.

The upshot of this is that much of GA research involves trial and error, a natural

selectionist approach true to its subject matter. This trial and error is not, of course,

totally uninformed; at the heart of most approaches is a putative gem of wisdom:

One approach currently gaining credibility is motivated by the belief that in restrict-

ing evolutionary forces to small pools or sub-populations within the main population of

genomes, one may encourage diverse approaches to speci�c problems to ourish within

the main population; this approach has been developed in response to a problem that

consistently dogs the operation of GAs:

It is entirely possible that a genome which is initially relatively un�t may possess the

key, or springboard, to a very �t creature -a good position in the n-dimensional search

space- of the future. Equally, a genome which is initially �t may well prove redundant in

the future, being further away in the search space from the optimum than the previous

ailing genome. If both these creatures are encountered early on in the evolution of the

main population and both are subjected to the full battery of evolutionary pressures -if

both are in direct competition with one another- then it is probable that the latter will

triumph at the expense of the former and a potentially useful future approach will be

lost. If, however, we allow the less �t genome to breed away from the full rigours of

the main population in a small pool then it may lead to the development of a better

solution than the previously �tter genome. In short, it is recognised that encouraging

diverse approaches to a problem is advantageous but that in GAs a �tter solution may

well come to predominate too quickly, thus preventing any of the weaker but potentially

useful approaches from reaping fruit. What is needed is an approach which compromises

between a desire to see the �ttest triumph and a belief that initially weak members of the

main population should be protected from the full application of the Darwinian ethic; a

time buying strategy to allow the di�erent approaches to show their worth.

One way in which this can be achieved is by employing a spatialised GA. The algorithm

is as follows:

1. Arrange initial n*n members on a toroidal (wrap around) array of dimension nxn.

2. To breed two creatures:

(a) Choose a member of the main population (parent1) on a group-�tness pref-

erential basis - where group-�tness is the average �tness of a member of the

main population and his immediate neighbours- from a sample of n chosen at

random; use rank-based-selection(RBS).

(b) Restrict breeding to within the sub-population de�ned by parent1 and its im-

mediate neighbours.

(c) Using RBS select a member of this subpopulation (parent2) to mate with par-

ent1.

(d) Crossbreed parent1 and parent2 and choose one of the crossed genomes to be

the the o�spring. Mutate this o�spring.

8



(e) Choose a member of the sub-population using RBS biased in favour of the

weaker members

5

. Replace this member with the o�spring.

Breeding, within this sub-population is governed by rank-based-selection (RBS) (see

section above) which is used to choose the breeding partners and the member of this

sub-population to be replaced by their o�-spring.

It should be recognised that these sub-populations merge together and that via



crossover operation radically disrupts this context we might expect many of the param-

eters, post-crossover, to be distinctly sub-optimal; it is possible that two very �t robots,

when bred, might lead to a very weak o�spring.

This should not, however, provoke despair in the method of strong direct-encoding.

Many weight connections and thresholds will probably be of some use in most networks.

The weights and thresholds run in the range from -127 to +127. Negative values can

be viewed as inhibitory (the node receiving input along a negatively weighted connection

being less likely to register 1 as its activation value) while positive are excitatory (the

node being more likely to register 1 as its activation value). Since the relative excitatory or

inhibitory capacity of a connection or threshold is preserved through the genetic operation

of crossover, and taking into account the fact that we might expect certain relative weights

to be generally useful for producing a �t network, it is only necessary for the genetic

algorithm to encourage these generally useful parameters for it to be successful; Holland's

schema processing has shown that GAs do perform this function (see [1])

8

.

5.2 The Hybrid Encoding

While strong direct-encoding can be shown to work (see Results section below) its e�ciency

must be called into question. As has been mentioned, by pre-establishing the structure of

the network we are already imposing what is almost certainly a sub-optimal state-space in

which the GA is required to work; better structures for the task exist. Recent interest in

evolving connectionist architectures

9

has focussed on using the GA to design structural

features of the network, either with �xed weight and threshold parameters (typically binary





5.3 Search Space Consideration

The total size of the strong direct-encoded genome is 130 signed integers

15

. Parametrically

this makes for a 130 dimensional state space.

In the hybrid encoding each output and hidden unit was allowed to de�ne ten weighted

connections. Although the total number of weighted connections was less (100 compared

with 120) than the strong direct-encoding, because each connection required two numbers,

(one to establish a link, the next to weight it) the search space, 210 dimensional, was

larger than the strong direct-encoding method.

It was hoped that the general e�ciency of genetic algorithms (see above), coupled

with the freedom of the neural network to establish novel and better task-oriented network

structures, would compensate for this increased search space and still allow the hybrid sys-

tem, in the allotted 2000 breeding cycles, to outperform the strong direct-encoded method

(see Results below for con�rmation of this belief).

Part II

The Simulation

6 Practical Considerations

6.1 Availability and Speed of Processor

As a member of a networked system, processor time is shared out among a group and is

as such fairly limited. The amount available a�ects considerations such as the complexity

of the environment.

6.2 Designing the Environment

The environment in a simulated robotics project can be made arbitrarily complex. Pro-

cessor intensive applications such as recursive ray-tracing (see section below) or complex

kinematics can almost always be made more accurate. However, the availability of pro-

cessor time meant that my environment had to be necessarily simplistic. The addition of

generous quantities of noise should, however, alleviate to a certain extent the problem of

unrealism (see section below on the importance of noise).

6.3 Choice of a Programming Language

Having been impressed by the speed of `C' coded neural networks, I decided to teach

myself this language and coded my programming project in it. It is not unusual for GAs

to take days to achieve results -dependent, of course, on the problem posed- and the speed

and e�ciency of implementation is an extremely important factor.

7 The Environment

The environment in which the guard-robot �nds itself is a two dimensional four-walled

room (dimensions 400x400 units). The walls radiate light with an intensity of 1, whilst

15

(input-hidden) 10x6 + (hidden-hidden) 6x6 + (hidden-output) 4x6 + (hidden and output thresholds)

10.
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Figure 2: The Automaton's Movement

the automaton is black (intensity 0) (see section below on ray-tracing).

7.1 The Kinematics

The robot and automaton do not physically interact. This transparency saves processor

time computing the collision
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Figure 3: The Simulated Robot

(b) If cos(�) is positive then the automaton is repelled along the line l

2

either by a

force proportional to the robot's velocity times cos (�) divided by the length of

l

2

or, in the case of the normalised automaton response (see below), at a speed

of 60 units per time phase.

8 The Robot

The robot is circular (the environment being two dimensional) with ten light sensors

arranged uniformly (every (2�/10) radians) around its periphery. It's movement is e�ected

by left and right wheels powered by separate motors (see Fig 3).

Information from the environment is obtained by the light sensors which return an

average intensity rating over a de�ned arc-spread 2� (see Fig 3). Referring to Fig 4,

normalised input from these (in the range [0,1] � R) is sent directly to the ten input

nodes of the robot's neural network

17

where the values are forward propagated through

the network, according to weighted connections and node thresholds whose parameters are

encoded on the robot's genome (see section on encoding the genome). This propagation

establishes the activation values of four output units (in the range [0,1] � R) O

1

; O

2

; O

3

and O

4

. The left motor response is obtained by O

1

�O

2

, the right by O

3

�O

4

; this gives

a possible range for each motor of between -1 and +1 (allowing forward and backward

motion, and any discrepancy between the left and right motor outputs providing for a

rotation motion) .

For the simulations run the left and right motor impulses at each time period were

multiplied by the robot's maximum forwards and backwards velocity of 30 distance units

per time period to give a distance over which each wheel travels; the robot's movement

is resolved into a translation and rotation dependent upon the distance travelled by each

17

analogous to its sensory nervous system, being employed to mediate between received sense data

subsequent action.

14
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Figure 4: Converting Light Intensities to the Robot's Movement

wheel.

Uniform noise at �10% is added at all stages of the network's



weights and thresholds, can be said to partition this input space into discrete areas. Mem-

bers of these areas provoke a similar output response which, applied to the motors, cause

the robot to move in a set way; in this way, the robot can be said to possess a number of

strategies. As the robot gets �tter, the partitioning of the input space into set output re-

sponse comes to represent progressively better strategies for repelling the automaton from

the centre; the guard-robot begins to develop a strategic understanding of the problem at

hand. The distributive nature of the neural network; each unit participating in a large

number of abstractions from the input space (for use in ful�lling useful discriminations of

the environment) makes it an e�cient way of storing the large amounts of knowledge the

robot must employ if it is to develop a successful general approach

19

.

The optimal solution to the task can be viewed as a vector in the parametric weight

and threshold space. Successful solutions will tend towards this vector and the GA can

be seen as the motive force for this tendency. In the case of the hybrid encoding scheme

(see above) the state space is extended to include structural details about the net; the

individual units are allowed to search for useful weighted links with other units, rather

than having them pre-established.

9.2 The Neural Network

The neural network in the guard-robot is analogous to a central nervous system. It acts

as an intermediary deciding, from a given sensory input -provided by the ten light sensors

arranged around the robot- what action is to be taken by the robot -achieved through

impulses sent to its left and right motor-driven wheels. The structure of the neural network

is dependent on the encoding system used (see section on encoding the network).
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matically formulated simulation which failed to take into account this `fuzziness' in the

real world would be of questionable relevance. The ability
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Figure 7: The rays are projected from the light sensor and the intensity registered is a a

product of their �rst encounter with an object (the automaton or a wall).

The simpli�ed procedure I employed assumed that the light in the simulation radiated

at an intensity of 1 from the arena walls. Each point on a wall could be assumed to be

a point source of light directed at a normal to the wall. The automaton was assumed

totally dark (any ray intersecting with its circle returning an intensity of 0) for maximum

contrast with walls. The intensity value returned by a ray was calculated by taking into

account only its �rst collision with an object.

In Fig 7 the ray leaves the sensor and intersects with the wall of the arena. The

intensity registered is proportional to the cosine of the incident angle (�) divided by the

square of the distance from sensor to the point of intersection (the inverse square law for

the radiation of light) times a constant c which regulates the distance from a wall at which

a ray perpendicular to that wall will return the maximum intensity of 1. Using vector

maths these values are calculated and an intensity for that ray returned. The intensity

registered by the sensor is the average of the ten rays traced over the arc-angle.

The ray tracing employed was necessarily simplistic (see comments above on the impor-

tance of limiting the processor time necessary) but the general noisiness of the simulation -

noise being injected at all phases of the operation of the neural network - does not require

much more then a crude intensity indicator, and in this respect the procedure works well.

Results obtained (see below) show that it provides enough information for the robot to

successfully negotiate a guard-dog behaviour. Within the limits imposed by the available

processor time it has been made as veracious as possible a simulation of light interaction.

following the multiple divergent rays this interaction might produce; each of these rays would in turn

be followed and their progress recorded until their contribution (in terms of adjusting the eventual light

intensity registered) was deemed insigni�cant, according to a pre-established threshold. The contribution



Part III

The Experiment

10 The Interface

A modest X-Windows interface was designed to allow monitoring of the GA's progress.

This interface provided for the initiation and subsequent review of a GA. From the inter-

face it is possible to initiate a GA and review its progress or that of an already evolved

population (speci�ed in the command line); monitoring of the behaviour of the �ttest in

the population, a graphical representation of the GA's performance and the spatialised

�tnesses of the population.

11 The �tness function

The task at hand requires the robot to guard the centre of the arena from intrusion. The

further away from the centre the automaton can be kept, the better the robot is doing its

job. I decided to employ a Gaussian function (G) giving an optimal �tness per unit time

of one if the automaton is con�ned to the corner of the arena (as far from the centre as

possible) and approximately zero (using a suitable radius of Gaussian) if the automaton

is at the centre:

G = e

�r

2

c

where r is the distance of the automaton from the centre and c is a constant chosen to

ensure a �tness return of approximately 0 for a centralised automaton.

Fitness is added at each time cycle giving an optimal �tness, for 400 time units, of

400. However, speed constraints and the general noisiness of the environment mediate

against �tnesses of over 200. An optimum �tness give the relative severity of the �tness

function (its non linearity means that maintaining the automaton at around half the

optimal distance from the centre accrues far less than half the optimal �tness) is around

this 200 mark.

12 Preliminary Details

A number of important parameters in the experiment are not under the control of the GA.

Possibly the most important is the arc angle over which each light receptor collects light.

I chose 90 degrees as a reasonable compromise (in Fig 3 angle � set at 45 degrees) and

though this is probably sub-optimal to the task (for which possibly the most important

element is discriminating the automaton from the background) it remained constant so

that comparisons as to the e�ectiveness of the di�erent encoding schemes could be made.

The starting positions for the robot and automaton are shown in Fig 8. The automaton

starts at the centre with the robot placed such that the automaton falls just outside its

radius of inuence. At time t with the automaton at the centre, the �tness function (see

Section) returns approximately 0, so in the number of time steps allocated (400 was chosen

since this meant the 2000 or so breeding cycles could be completed in a realistic time) the

robot's centre must enter into the circle of radius 100 (its radius of inuence) from the

21
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Figure 8: The Initial Positions in the Arena

centre of the arena if it is to e�ect the automaton and register a signi�cant �tness for the

trial. This discriminates heavily in favour of robots attracted to the automaton or with a

tendency to centralise themselves in the arena -both good strategies.

13 Calculating the Fitness of an O�spring

An o�spring is chosen by applying the algorithm for a spatialised GA (see section above

on choosing a GA). The �tness of the o�spring is then decided by giving it a number of

trial runs in the arena:

13.1 The Trial Based system

The starting position for each trial is as described above but the initial orientation of

the robot is random (a value in radians in the range [0,2*�] � R) to encourage durable

guard-dog behaviour; a robot which just moved forwards regardless of input might do well

every now and then but could not be said to be guarding anything.

radians



at the centre of the arena whilst turning very quickly proved a very e�ective strategy and

the �ttest of the early simulations all possessed a variant on this strategy, with marginally

di�erent sizes of epicycle and speeds (see Results below).

In order to encourage more varying behaviours, the decision was taken to normalise

the speed of the automaton; its repulsion being constant regardless of the speed of the

robot.

By mediating against the quick epicyclists the hope was to encourage behaviour which



Figure 9: The epicyclist makes a sharp turn

away from the wall and towards the centre of

the arena

Figure 10: The epicyclist begins facing the cen-

tre of the arena and proceeds to colonise it

proximity, still generate enough repulsion to score a high �tness, now robots maintaining

a closer proximity (within 100 distance units) to the automaton are guaranteed more

repulsion.

Normalising the repulsion of the automaton proved surprisingly e�ective at producing

varying robot behaviours (see Fig 17 and Fig 19). Optimising speed in a �xed position no

longer proves necessarily the best strategy for the robot. While fast robots were observed

(see curly robot in Fig 9 and Fig 10), speed now appears to be employed more as a means

of inuencing large areas of the arena in a short space of time

23

whereas before this useful

strategic employment of speed was subsumed by the general e�cacy of speed as a means

of generating proportionate repulsion.

One of the most successful robots bred, I nicknamed the big dipper (see below for an

analysis). Eschewing the large ellipses employed by curly robot, the big dipper employs

a more direct approach. Its general behaviour is shown in Fig 17. Circling for a few

time cycles it then moves rapidly to colonise the centre of the arena. This colonisation is

more localised than the previous epicyclical strategies, relying on the robot's continuous

presence at the centre, rather than its speed, to score high �tness points (see below for a

fuller analysis of the big dipper).

15.3 Direct Versus Hybrid Encoding

The availability of processor time prevented a large number of trials being run, but for

the purposes of this project three to four trials are assumed representative.

With the parameters �xed such that a comparison could be made

24

simulations were

run and relative �tnesses compared.

23

the larger the epicycles employed by the robot, the more likely that, at some point, the automaton

will evade the robot's inuence and return to the centre, thus costing the robot valuable �tness points.

One way to compensate for this is to increase the speed of the robot.

24

the light sensors averaging over 90 degrees; the repulsion normalised.

24



15.3.1 Degrees of Convergence

Of interest in monitoring the performance of the genome populations was the degree of

convergence exhibited; the extent to which the �tnesses in a population are similar to one

another; a guide to this is how the best performance for the population is reected in the



Figure 13: A typical performance by the hy-

brid encoding scheme. This simulation bred the



The Big



Figure 17: The performance of the big dipper

with noise injected

Figure 18: The performance of the big dip-

per with no noise added to the system

Figure 19: The corkscrew traps the automaton

in the corner

Figure 20: A standard response by the

corkscrew. Notice the colonising behaviour,

shown by the dark circle

28



Figure 21: The corkscrew colonises the centre

15.4.2 Analysing Motor Response

The Big Dipper

In Fig 22 the left and right motor response of the big dipper, with noise added, is

shown over the �rst 100 time units of its progression. Its standard motion is characterised

above and can be seen in Fig 17. The left motor response remains low throughout the

100 time units, though varying slightly. However, the right motor, normally with a high

positive impulse, is characterised by occasional periods of low activity where the graph is

seen to dip. Three consecutive trials are superimposed and this dip is a regular feature of

all three. During the time when its right motor output is low, the rotational component

of the robot's motion is minimised and its translational component increased

26

; in other

words it stops spinning and covers a relatively large amount of ground. The sudden spurt

towards the centre that characterises the big dipper'smovement is explained by this sudden

diminution in the right motor output.

Fig 23 shows the motor responses of the big dipper without noise. The right motor

shows a high periodic response which keeps within a fairly small band. The left motor has

a small response but it is periodic. This response �ts the observed rotational behaviour

(see Fig 18). Unlike that in Fig 22 the right motor response does not occasionally dip,

allowing for increased translational motion; the noiseless response is that of a robot with

a consistently high rotational component of motion and very little translation.

The part noise plays in allowing the big dipper to move to the centre seems clear.

Recurrencies within the network build up and occasionally are enough to push the robot

into making a positive move. This positive action is required to move the robot from an

ambiguous position to a more certain one; once it has begun to move towards the centre,

interactions with the automaton become increasingly likely and ambiguity diminishes.

Looking at Fig 23 the right motor output oscillates periodically. It is probable that

the sudden dip in the noisy motor response
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Figure 24: The Motor Response of the robot corkscrew with and without noise; three



Nevertheless, a number of parameters in the simulation were under my control that

I feel it would have been better to submit to environmental pressures. For example, in

the hybrid encoding system the number of connections each unit could receive was pre-

established. It would doubtless be far more e�cient, and in the long run e�ective, to

allow the GA to establish these parameters

28

. I feel now that I allowed too many weight

connections; the larger weight space this involves required more breeding cycles than time

allowed for to do it justice.

Though the results achieved with the hybrid method were superior to those managed

by the strong direct-encoding (see Results above), areas such as the number of weight

connections allowed to each unit, the possibility of allowing a unit to send impulses to

another rather than just receive them (though this would require an extra indicator on

the genome), the number of cycles the neural network propagates during each time unit

etc., suggest improvements for the future.

17 Conclusion

The genetic algorithm employed proved successful in breeding network controllers that

simulated a guard-dog behaviour in the robot. The �tness of the population increased

progressively for around 1500 breeding cycles and then was then seen to fall o� as further

progress became increasingly unlikely.

Though the environment simulated was necessarily simplistic, this does not invalidate

the results achieved. Within the large search space de�ned, the GA was able to breed

neural network controllers that enabled the robot to perform its speci�ed guard-behaviour

with some e�cacy. The task is of suitable complexity that I feel a human trying to design

an intermediary, between the information from the robot's light sensors and its subsequent

response, that performed the task as well would be faced with a considerable challenge;

certainly one greater than designing a spatialised GA to breed an attempted solution.

While this project has shown that the approach of breeding network controllers has

some e�cacy, the success of the hybrid encoding scheme (see Results) over the conventional

strong direct-encoding approach highlights the ever-present possibilities for innovation.

The more parameters left under the e�ective pressures of natural selection, the better the

results seem to be. This seems in validation of the belief that, in some areas, natural

selection is a more e�ective tool than human intuition. An obvious next step would be

to place as many parameters as possible under the control of the GA, towards the aim

of limiting, as far as possible, any rigid structural assumptions imposed from above

29

;

my intuition is that the freer the GA to explore the more impressive will be its eventual

solution.

The time available meant that a control experiment, using a more conventional GA

(in this context, non-spatialised) could not be run, and, as such, no �gures are available

for comparing relative performance. It is only speculation, but the fact that diverse

approaches to the problem (see Results) did surface leads me to believe that the spatialised

GA ful�lled at least this aspect of its remit.

28

in [4] an example is given of a variable length genome; the genome being extendible allows it to

increase its own search space. This makes regulating genetic operations a more complex operation, but

the advantages in terms of exibility seem to outweigh this aspect.

29

However, as mentioned, care must be taken not to expand the search space too much. The incremental

approach favoured by Harvey, Husbands and Cli� (see [2],[4] and [9]) where the genome is of variable length

and able to increase its own search space points towards a possible solution to the problem of initially

overloading the genome.

32
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