
Managing Inconsistencies in an Evolving Specification

Steve Easterbrook Bashar Nuseibeh

School of Cognitive and Computing Sciences, Department of Computing, Imperial College
University of Sussex, Brighton, BN1 9QH, UK. 180 Queen’s Gate, London, SW7 2BZ, UK.

easterbrook@cogs.susx.ac.uk ban@doc.ic.ac.uk

Abstract
In an evolving specification, considerable effort is spent

handling recurrent inconsistencies. Detecting and resolving

inconsistencies is only part of the problem: a resolved

inconsistency might not stay resolved. Frameworks in

which inconsistency is tolerated help by allowing resolu-

tion to be delayed. However, evolution of a specification

may affect both resolved and unresolved inconsistencies.

We address these problems by explicitly recording

relationships between partial specifications (ViewPoints),

representing both resolved and unresolved inconsistencies.

We assume that ViewPoints will often be inconsistent

with one another, and we ensure that a complete work

record is kept, detailing any inconsistencies that have been

detected, and what actions, if any, have been taken to

resolve them. The work record is then used to reason about

the effects of subsequent changes to ViewPoints, without

constraining the development process.

1 . Introduction

In an evolving specification, considerable development

time and effort is spent handling recurrent inconsistencies.

Such inconsistencies are particularly prevalent during

requirements engineering, when conflicting and contra-

dictory objectives are often required by different stake-

holders. Tools and techniques for detecting and resolving

inconsistencies only address part of the problem: they do

not ensure that a resolution generated at a particular stage

will apply at all subsequent stages of the process.

In this paper, we propose an approach for managing

inconsistencies that arise during the development of multi-

perspective specifications, by explicitly recording

consistency relationships between partial specifications,

and by representing both resolved and unresolved

inconsistencies. We use the ViewPoints framework for

multi-perspective software development as a vehicle for

demonstrating our approach, and illustrate our techniques

by working through an example drawn from the

behavioural specification of a telephone.

2 . The ViewPoints Framework

We base this work upon a framework for distributed

software engineering, in which multiple perspectives are

maintained separately as distributable objects, called

ViewPoints. We will briefly describe the notion of a

ViewPoint as it is used in this paper. [9] provides a fuller

account of the framework, and [7] gives an introduction to

the issues of inconsistency management.

A ViewPoint can be thought of as an ‘actor’, ‘role’, or

‘knowledge source’ in the development process, combinedA ViewPoi Tc
as, ely as dculti-pe119gineering, in sx.m.00work

tion to besepar’ in the d
0.79

inconsissepar’ in the d'
0.124 Tc
12 d'
0ess, combin-12 Td
2.446 Tw
(A ViewPot of CoE)Tj
 thought ohasand [7o'
0.073 slots:f8pViewPo12 Td
0 Tw
74ent oon

ViewPoint templates, which together describe the set of

notations provided by the method, and the rules by which

they are used independently and together.

The notion of a viewpoint was first introduced as part

of requirements specification methods such as Structured

Analysis [22] and CORE [17], and more recently deployed

for validating requirements [16], domain modelling [5] and

service-oriented specification [12, 14]. In our framework,

we use ViewPoints to organise multi-perspective software

development in general, and to manage inconsistency.

3 . Inconsistency Management

In our framework, there is no requirement for changes

to one ViewPoint to be consistent with other ViewPoints

[8]. Hence, inconsistencies are tolerated throughout the

software development process. This contrasts with many

existing support environments which enforce consistency,

for example by disallowing changes to a specification that

lead to inconsistencies.

We view strict enforcement of consistency throughout

the requirements process as unnecessarily restrictive. Partly

this view arises from a consideration of the distributed

nature of software development: it may not always be

possible to check that particular changes are consistent

with work in progress at another site. Consistency

enforcement can also stifle innovation, causing premature

commitment and preventing exploration of alternatives

[15]. Finally, development participants are likely to have

conflicting views about many aspects of the requirements,

and exploration of these conflicts are greatly facilitated by

the ability to express the alternative views.

The ability to express and reason with inconsistent

specifications during software development overcomes

many of these problems. However, we assume that

eventually a consistent specification will be required as the

basis for an implementation1. We therefore focus on the

management of inconsistencies, so that the specification

process remains a coordinated effort. Consistency checking

and resolution can be delayed until the appropriate point in

the process. As there is no requirement for inconsistencies

to be resolved as soon as they are discovered, consistency

checking can be separated from resolution.

In order to manage inconsistencies, the relationships

between ViewPoints need to be clearly defined. In general,

the relationships arise from deploying the software

development method. For example, if a method involves

hierarchical decomposition of a particular type of diagram,

then two diagrams that are hierarchically related should

obey certain rules. Similarly, a method which provides

several notations will specify how those notations inter-

1 We will ignore the question of whether inconsistencies in a final
specification or an eventual product are acceptable under some
circumstances.

relate. Thus, the possible relationships between

ViewPoints are determined by the method.

Consistency checking is performed by applying rules,

defined by the method, which express the relationships that

should hold between particular ViewPoints [21]. The rules

define partial consistency relationships between the

different representation schemes. This allows consistency

to be checked incrementally between ViewPoints at

particular stages rather than being enforced as a matter of

course. A fine-grained process model in each ViewPoint

provides guidance on when to apply a particular rule, and

how resolution might be achieved if a rule is broken [20].

The need to tolerate inconsistency has been recognised

in a variety of areas, including configuration management

[23], programming [3], logical databases [10] and

collaborative development [18]. In [7], we discuss how co-

ordination between ViewPoints can be supported without

requiring consistency to be maintained. A key problem is

to support resolution of inconsistencies in an incremental

fashion, so that resolutions are not lost when the

ViewPoints continue to evolve. We now present a scenario

to illustrate how this process is supported.

4 . Scenario

Our scenario involves the behavioural specification of a

telephone. We assume the existence of a method which

allows such specifications to be partitioned into separate

ViewPoints. We begin by outlining the salient features of

the method, before introducing the scenario.

4 . 1 . The method

Our method uses state transition diagrams to specify the

required behaviour of a device, in this case a telephone.

The method permits the partitioning of a state transition

diagram describing a single device into separate

A (owner=Anne; domain=telephone/calling)

idle
dial

tone

ringing

tone

engaged

tone
connected

off hook

lift

receiver

dial

(callee idle)

callee

lifts

receiver

dial

(callee off

hook)

callee

replaces

receiver

replace

receiver

Figure 1: Anne’s initial ViewPoint specification for
making a call.

B (owner=Bob; domain=telephone/incoming call)

idle ringing connected

dial

tone

replace

receiver

lift

receivercaller dials

caller replaces

receiver

caller

replaces

receiver

Figure 2: Bob’s initial ViewPoint specification for
receiving a call. Note that this specification is incomplete,
as Bob has not yet considered what would happen if the
callee replaces the receiver when in the connected state.

states involved when the handset is being used to make a

call, and the other describes the states involved when the

handset is receiving a call. There is an implicit assumption

that their descriptions could be merged at some point to

give a complete state transition diagram for the handset.

The method provides the following:

• A notation for expressing states and transitions

diagrammatically. The state transition notation includes

extensions for expressing super-states and sub-states2.

• A partitioning step which allows a separate diagram to

be created to represent a subset of the behaviours of a

particular device. This may mean that on any particular

diagram, not all the device’s possible states are

represented, and for some states, not all the transitions

from them are represented.

• A set of consistency checking rules which test whether

partitioned diagrams representing the same device are

consistent with one another. These rules test whether

two diagrams describing the same device may be merged

without any problems; even though the checking

process does not require such a merge to take place.

The method also includes guidance about when to use each

of the steps, and when to apply the consistency rules. The

scenario will illustrate each of these steps in turn.

4 . 2 . Preliminary specifications

At the start of our scenario, Anne has created a

ViewPoint to represent the states involved in making a

call (figure 1), and Bob has created a ViewPoint to

represent the states involved in receiving a call (figure 2).

As they are both describing states of the same device, a

number of consistency relationships must hold between

their ViewPoints.

2 We use Harel’s extended state transition diagrams [13]. The
extensions include the use of super and sub-ordinate states, as
illustrated in figure 1. Transitions out of super-states are available
from

ab5e

ViewPoint A actions:

(1) delete transition(off hook, idle)

(2) move state(connected) so it is no longer part of state(off

hook)

(3) move transition(off hook, idle) so it no longer connects from
state(off hook)

(4) delete state(connected)

(5) delete state(idle)

(6) rename state(connected)

(7) rename state(idle)

(8) devolve transition(off hook, idle) to all sub-states of off hook

ViewPoint B actions:

(9) delete state(connected)

(10) delete state(idle)

(11) rename state(connected)

(12) rename state(idle)

Joint Actions:

(13) copy transition(off hook, idle) from ViewPoint A to
ViewPoint B as transition(connected, idle)

Table 1:

A (owner=Anne; domain=telephone/calling)

dial

tone

ringing

tone

engaged

tone

off hook
dial

(callee=idle)

callee

lifts

receiver

dial

(callee=

off hook)
callee

replaces

receiver

on hold

unknown action between the original resolution and the

current action.

• The inconsistency re-appears, as is the case in our

scenario. Here, the inconsistency is marked as

unresolved, and annotated to show which actions

resolved and re-introduced it. This allows ViewPoint

owners to further eliminate suggested resolution actions,

if they have been tried and found to be unsatisfactory.

4 . 8 . Discussion

Incremental exploration and resolution of the

inconsistencies revealed an important mismatch between

the conceptual models held by the two participants

described in our scenario; namely about when connection

are terminated, and whether there is a difference in being

connected as a caller and connected as a callee. Although it

is entirely possible that this mismatch may have been

detected anyway, the explicit resolution process provides a

