
Incrementally Learning the Rules for Supervised

Tasks: the Monk's Problems

Ibrahim KUSCU

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

Email: ibrahim@cogs.susx.ac.uk

December 7, 1995

Abstract

In previous experiments [4] [5] evolution of variable length mathematical ex-

pressions containing input variables was found to be useful in �nding learning rules

for simple and hard supervised tasks. However, hard learning problems required

special attention in terms of their need for larger size codings of the potential solu-

tions and their ability of generalisation over the testing set. This paper describes

new experiments aiming to �nd better solutions to these issues. Rather than evo-

lution a hill climbing strategy with an incremental coding of potential solutions

is used in discovering learning rules for the three Monks' problems. It is found

that with this strategy larger solutions can easily be coded for. Although a better

performance is achieved in training for the hard learning problems, the ability of

the generalisation over the testing cases is observed to be poor.

Keywords: Supervised learning, hard learning, Monk's problems, hill climb-

ing, genetic programming.

1 Introduction

In a previous paper [4] a genetic based encoding schema has been presented as a po-

tentially powerful tool to discover learning rules for several simple supervised tasks. In

another paper [5] the model is applied to more di�cult supervised learning problems

such as three Monks' problems and parity problems.

Combined with genetic algorithms the model can successfully produce evolution of

learning rules. Rather than searching for a general learning algorithm (as in the work

of Chalmers [1]), the aim is to see whether evolution would produce a speci�c learning

rule for the problem in hand. The representation schema is very similar to the one used

by Koza [3]. However, introducing prior knowledge into the representation of initial

solutions using problem speci�c functions is minimal, if any at all. In this strategy

potential learning rules are encoded as random mathematical expressions at variable

lengths. The expressions are made up of random numbers and random variables. The

variables are to be instantiated to input values of training set in a typical supervised

learning. By using LISP's "EVAL" statement, the expressions are evaluated to certain

numbers and by the help of a squashing-function this value is mapped to a value in the

1

range of output values of the supervised task. The success of an expression in learning

the task is determined by the number of correct mappings from the training set and by

the degree of generalisation over the testing set.

The experiments showed that the encoding strategy and evolution are useful to

discover or re-represent the problem-speci�c-functions describing the learning rules by

using a relatively more general, �xed set of non-problem-speci�c functions. The model

is also helpful in solving hard learning problems (i.e. in the context of this research hard

learning problems are considered to be those supervised learning problems where the

learning rule refers to the relationship among the input values rather than representing

a direct correlation between value(s) of input(s) and output variable(s) [2] [7]) such as

Monk 2 and parity problems. However, when the problems was larger and more complex

(such as Monk2 and 5-bit and higher parity problems), the ability of the model in coding

for good solutions and e�ectively generalising over the testing set was not found to be

satisfactory.

In this paper these issues are investigated further. The experiments involve an incre-

mental encoding of an expression as a potential solution. Although the basic encoding

strategy (forming potential solutions as random mathematical expressions) is the same

Problem M3: (jacketcolor = green and holding = sword) or

(jacketcolor = (not blue) and bodyshape = (not octagon))

The most di�cult one among these problems is the second problem since it refers to a

complex combination of di�erent attribute values and is very similar to parity problems.

Problem one can be described by standard disjunctive normal form (DNF) and may

easily be learned by all symbolic learning algorithms such as AQ and Decision Trees.

Finally, problem three is in DNF form but aims to evaluate the algorithms under the

presence of noise. The training set for this problem contains 5 percent misclassi�cation.

The results of the comparison have shown that only Backpropagation, Backprop-

agation with decay, cascade correlation and AQ17-DCI had 100 percent performance

on Monk 2 problem. However, the success of Backpropagation is probably is due to

the conversion of original training set values into binary values which obviously this

will directly e�ect the learning rule representing the true cases. The success of AQ17-

DCI is clearly attributable to one of its function which tests the number of attributes

for a speci�c value. Monk 1 and Monk 2 were relatively easy to learn by most of the

algorithms.

2.0.1 Training and Testing Sets

The training and testing sets used for the experiment in this

3 The Model

3.1 The Encoding Schema

The potential learning rules are encoded as simple mathematical expressions rather

than bit representation. They are at variable lengths. The expressions are produced

randomly involving random numbers (in some experiments real numbers and in others

integers or the combination of the two has been tried) and a number of variables to

be instantiated to the values of inputs from each pattern in the training set. The

mathematical operators include plus, minus and multiplication (In addition to these

MOD and division operators are also tried. Although their absence for the experiments

to be described here did not show any noticeable di�erence, it reduced signi�cantly the

computational cost of processing individuals). A typical expression for a problem with

two input values would look like this:

(((1 + *I1*) + (*I2* * *I1*)) - ((0 - *I2*) - (*I1* * *I2*)))

This expression is randomly produced for a problem with two input values. *I1*

and *I2* are the variables to be instantiated to the input values from the patterns at

each time of evaluation.

When generating the expressions a variable parameter called *percentage* is used

to impose how complex we want the expressions (i.e. longness or shortness of the

expressions). It can have values from 0 to 100. The higher the percentage value the

more complex the expression tends to be. In the experiments variable *percentage*

values are used depending on the complexity of the problem (in the range of 75 to 85).

Internally each of the expressions are represented as trees. The typical structure of

an expression would look like as in Figure 1.

The expression: (*I1* - ((*I2* + 1) * 0))

�

@

@R

�

�	

I1

�

�

�	

@

@R

+

�

�	

@

@R

0

I2

8

Figure 1: Tree representation of an expression.

In order to balance the behavior of the expressions (i.e. the bias toward positive

expressions) half of the expressions are given a minus sign in front of them. This is

4

to achieve, potentially an equal chance of producing negative and positive values when

generating the expressions in the initial population.

3.2 Forming Incremental Representations

An expression as a potential solution to the problems is built incrementally as follows:

� Produce an expression randomly and test it over the training cases. Repeat this

for a number of times and retain the one which produces the highest success(call

it E1).

� Next, create another random expression (call it E2). Combine E2 with E1 by

either (+) or (�) function and test the combined expression over the training

cases. Repeat this for a number of times and retain the expression which produces

higher success when it is combined with E1 than the success produced by E1 alone.

(if a recently added expression does not contribute to the level of success, repeat

creating and combining until an expression which contributes to the success is

found or termination condition is reached).

� Then create a third random expression (call it E3) and combine it with the pre-

vious two by using either of (+=�) functions again and test on the training cases.

Repeat this for a number of times and retain the expression which produces higher

success when E3 is combined with E1 and E2 than the success produced by E1

and E2 combined only.

� Iterate above incremental process until a satisfactory level of success is reached

by any combined expression and retain that expression as a potential solution.

Thus, in the experiments described here a modi�ed representation of the expressions

is used. This form of encoding introduces an explicit hierarchy to the representation

of possible solutions. The general structure of any expression encoding for a possible

solution would look like as follows:

(Squashing-Function ((E1) +/- (E2) +/- ...+/-(EN)))

A combined expression is evaluated and the value obtained is mapped to a value in

4 Results

The performance of the model on the Monk's problems is tested using both the original

4.1 MONK-1:

(M2B 0.763958 0.834312

(- (- (- (+ (- (+ (- (-

(LF2 (- *I11* 0.410278))

(LF2 (|%| *I11* *I7*)))

(LF2 (* *I8* *I11*)))

(LF2 (* (|%| *I1* *I7*) (+ *I11* *I14*))))

(LF2 (* *I6* 0.018643)))

(LF2 (- (|%| (- *I10* 0.445533)

(|%| (- (+ *I8* 0.177315) (- (- (|%| *I4* *I7*)

(* *I2* 0.929654)))) (|%| *I13* *I7*))))))

(LF2 (* *I2* 0.015149)))

(LF2 (- (* (|%| *I7* *I15*) (|%| *I10* 0.33154)))))

(LF2 (- (- (|%| (- *I15* *I1*) (* *I5* *I14*))

(- (|%| (|%| *I10* *I8*)

(* (- *I3* 0.277117) (+ *I4* *I3*))))))))

M2B 6066)

(M2B 0.839254 0.961007

(- (+ (+ (- (- (- (- (- (- (- (-

(LF2 (- *I11* 0.417749))

(LF2 (|%| *I7* *I11*)))

(LF2 (* (|%| *I7* *I13*)

(|%| *I6* 0.025976))))

(LF2 (- (|%| (|%| *I11* *I1*)

(- (|%| (+ *I11* *I15*)

(+ *I15* *I12*)))))

))

(LF2 (* *I8* *I11*)))

(LF2 (- (* (* *I4* *I2*) (* *I9* *I11*)))))

(LF2 (- (|%| (* (- *I3* *I7*) (|%| *I12* *I9*))

(|%| *I5* *I1*)))))

(LF2 (* *I8* 0.015916)))

(LF2 (* *I15* 0.032574)))

(LF2 (* (* *I3* 0.464306)

(- (+ (- (+ (|%| *I5* *I4*)

(|%| (- *I10* 0.882678)

(* *I2* 0.098271))))

(- (- (|%| *I13* *I8*)

(- (* (* *I6* *I3*)

(- (* (|%| *I10* 0.45645)

(|%| *I12* *I5*)))))))))))

)

(LF2 (- (- (* (* *I6* *I13*) (* *I6* *I10*)))

(* *I13* *I11*))))

(LF2 (- (* (+ *I10* *I8*)

(|%| (* (+ (* *I15* *I3*) (|%| *I8* 0.856525))

(|%| *I7* *I10*))

(+ *I1* 0.916587))))))

M2B 15699));;;

9

4.3 MONK-3

(M3O 0.981558 0.951792

(+

(- (LF2 (* *I2* 0.195083)) (LF2 (* *I1* 1.29916)))

(+ (LF2 (- *I5* 4.39331)) (LF2 (* *I1* *I4*))))

M3O 1049))

(M3B 0.972093 0.957318

(+ (+ (+ (+ (+ (+

(LF2 (- *I6* 0.181332))

(LF2 (|%| *I14* *I14*)))

(LF2 (* *I15* 0.405052)))

(LF2 (+ *I6* 0.18335)))

(LF2 (- (* *I2* 0.048406) (* *I6* 0.873582))))

(LF2 (* *I13* 0.054364)))

(+ (LF2 (* (* *I2* *I13*)

(- (|%| *I4* *I3*) (|%| *I10* *I5*)))))))

4.4 Parity Problems

4.4.1 2-BIT-PARITY

((1.0 (+ (-

(* 0.852533 (- (* *I1* *I2*))) (* -0.497317 *I1*))

(* 0.262082 *I2*))

P2 62))

(1.0 (- (+

(* -0.730121

(- (* (* *I1* *I1*) (+ (- (|%| (- (+ *I1* *I2*))

(- (- (* *I1* *I2*)) *I2*))) *I2*))))

(* -0.011222 (- *I2* (- (- *I2* *I1*)))))

(* -0.841233 (- (* (- (|%| *I1* *I2*) *I2*) *I2*))))

P2 56))

(1.0 (-

(* -0.682833

(- (- (* (- (* *I2* *I2*)) *I2*)

(+ *I1* (- (* (+ *I2* *I2*) *I2*))))))

(* -0.838546 (- (* *I1* (- *I2* *I1*)))))

P2 3))

((1.0 (+ (-

(* -0.622615 *I2*) (* -0.454473 *I1*))

(* 0.896444 (- (|%| *I2* (- (- (- (* *I1* *I2*))

(- *I1* *I2*)))))))

P2 26))

10

4.4.2 3-BIT-PARITY

((1.0 (+ (+

(* 0.782908

(- (+ (+ (- (* *I2* *I3*) (+ *I1* *I3*))

(* (* *I3* *I3*)

(- (|%| (* *I2* *I3*) (|%| *I1* *I3*)))))

(- (- (|%| (* *I3* *I2*)

(- (|%| (- *I2* *I1*) (+ *I1* *I3*)))))

(+ *I1* *I2*)))))

(* 0.944947

(- (* (+ (- (- (* *I2* *I2*) (|%| *I2* *I2*)))

(+ *I2* *I1*)) (+ *I3* *I1*)))))

(* 0.906881 (|%| (+ *I3* *I1*) (|%| *I3* *I2*))))

P3 632))

(1.0 (+ (- (- (+

(* 0.554274 *I1*)

(* -0.571618 (* *I1* (- *I2* *I3*))))

(* -0.63217 (|%| *I3* (- (- (* *I2* *I3*) *I3*)))))

(* 0.14732 (+ (- (- *I2* (* *I3* *I3*))) (+ *I1* *I1*))))

(* -0.649549 (* *I1* (|%| (* (- *I1* (|%| *I2* *I3*))

(- (- (- (+ (* *I1* *I3*) *I3*)) *I3*))) *I3*))))

P3 727))

4.4.3 4-BIT-PARITY

((0.950411 (+ (+ (+ (+ (+

(* 3.07007 (LF2 (- *I4* *I3*)))

(* 2.86816 (LF2 (- *I2* *I1*))))

(* 9.55089

(LF2 (- (* (- *I4* *I3*)

(- (- (|%| (|%| *I3* *I1*) (+ *I3* *I1*))

(|%| *I1* *I3*))))))))

(* 0.171425 (LF2 (- *I3* *I4*))))

(* 0.182571 (LF2 (* *I3* *I1*))))

(* 6.52985

(LF2 (- (+ (- (* (|%| *I4* *I1*) (|%| *I3* *I4*)))

(|%| *I2* *I4*))))))

P4 9926))

11

4.4.4 5-BIT-PARITY

(0.9375 (- (- (+ (+ (- (- (+ (+ (+

(* 0.922868

(|%| (- (- (|%| (- (+ (- (|%| (-

(|%| (|%| *I4* *I1*) (- *I3* *I2*)))

(* *I5* *I3*))) (- *I2* *I5*)))

(|%| *I1* *I3*))) (+ *I1* *I3*))

(- (- (+ *I2* *I3*)

(- (+ (+ *I5* *I2*) (- *I1* *I4*)))))))

(* 0.081095

(|%| (- (* (|%| *I3* *I2*) (|%| *I3* *I2*)))

(- (+ (- *I4* *I5*) (+ *I2* *I5*))))))

(* 0.112516

(* 0.389813

(- (|%| (- *I5* *I4*)

(+ (* *I2* *I1*) (|%| (- (* (+ *I2* *I4*)

(+ *I4* *I5*))) (- *I1* *I1*))))))))

(* 0.16357

(- (* (- (- (+ *I5* *I1*) (- *I4* *I3*)))

(- *I2* *I4*)))))

(* 0.216359 (- (* *I3* *I3*) (* *I3* *I2*))))

(* 0.340928

(- (* (- (- (- (- (+ *I1* *I1*)

(* (+ *I2* *I4*) (|%| *I1* *I1*))))

(- (|%| (|%| (- *I1* *I4*)

(- (- (* *I3* *I4*) (|%| *I3* *I2*))

(* Tj
15.6 0 Td
(*I1*)Tj
265+

(0.90625 (- (+ (- (- (+ (+ (+ (+

(* 0.942357

(|%| (* (* (+ (|%| *I5* *I1*)

(- (- (+ *I2* *I2*) (|%| *I5* *I5*))))

(- (* *I2* *I3*) (|%| *I5* *I1*)))

(* *I3* *I3*)) (- (+ (* *I4* *I1*)

(- (+ (- (- (+ (+ *I1* *I5*)

(|%| (+ *I5* *I4*) (- *I4* *I5*))))

(+ *I5* *I4*)) (* (- (* (- *I5* *I2*)

(- *I5* *I5*))) (- *I1* *I4*))))))))

(* 0.532938

(- (+ (- *I1* *I5*)

(- (- (- *I4* *I3*) (|%| *I2* *I4*)))))))

(* 0.72181

(* (- (+ (- (|%| - (+ (+

(*

5 Conclusions

The research described in this paper is aimed to see whether a hill climbing strategy with

an incremental encoding of randommathematical expressions can improve the ability to

code for the solutions and generalise over the testing set for simple and hard supervised

learning tasks. Among the Three Monk's problems, solutions to Monk 1 and Monk 2

were found easily and satisfactorily. Although, the performance in learning the rule for

Monk 2 increased compared to performance of the solutions found in previous experi-

ments and was better than the performance of the most learning algorithms reported

in [8], it was not as good as the performance of back-propagation. In all cases, during

the training a solution with a performance higher than 90 percent found for Monk 2

but they all showed a poor generalisation over testing set. When tested with the parity

problems, similar results are observed. The model showed increased performance in

coding for up to 5 bit parity problems, but when tested on incomplete parity mappings

it showed a poor generalisation ability. Thus, the encoding strategy together with hill

climbing is useful in �nding a solution for hard learning problems. However, it is not

clear whether the problem of generalisation is attributable to the nature of the hard

learning problems or the encoding strategy. In order to discover this, an analysis of

the solutions to parity problems with incomplete data sets is being carried out. The

experiments also showed that the number of individuals processed in �nding a solutions

are less than what is required by the evolutionary approach but solutions found are

longer and more complex.

The experiments have shown clearly the advantage of incremental encoding. How-

ever, in this strategy sub expressions are produced randomly and far from being optimal

in terms size and ability to generalise. In future experiments in order to enhance the

incremental strategy evolution can be used to �nd better sub-expressions.

References

[1]

