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SUMMARY

The vast majority of work in machine vision em-

phasizes the representation of perceived objects and

events: it is these internal representations that in-

corporate the `knowledge' in knowledge-based vision

or form the `models' in model-based vision. In this

paper, we discuss simple machine vision systems de-

veloped by arti�cial evolution rather than traditional

engineering design techniques, and note that the task

of identifying internal representations within such sys-

tems is made di�cult by the lack of an operational

de�nition of representation at the causal mechanis-

tic level. Consequently, we question the nature and

indeed the existence of representations posited to be

used within natural vision systems (i.e., animals). We

conclude that representations argued for on a priori

grounds by external observers of a particular vision

system may well be illusory, and are at best place-

holders for yet-to-be-identi�ed causal mechanistic in-

teractions. That is, applying the knowledge-based vi-

sion approach in the understanding of evolved systems

(machines or animals) may well lead to theories and

models which are internally consistent, computation-

ally plausible, and entirely wrong.

1 INTRODUCTION

The vast majority of work in machine vision em-

phasizes the representation of perceived objects and

events: it is these internal representations that are the

`knowledge' in knowledge-based vision and the `mod-

els' in model-based vision. In this paper, we argue that

such notions of representation may have little use in

explaining the operation of simple machine vision sys-

tems which have been developed by arti�cial evolution

rather than traditional engineering design techniques;

and hence are of questionable value in furthering our

understanding of vision in animals, which are also the

product of evolutionary processes.

This is not to say that representations do not exist

or are not useful: there are many potential applica-

tions of machine vision, of practical engineering im-

portance, where signi�cant problems are alleviated or

avoided altogether by use of appropriate structured

representations. Examples include medical imaging,

terrain mapping, and tra�c monitoring (e.g., Taylor,

Gross, Hogg, & Mason, 1986; Sullivan, 1992).

But the success of these engineering endeavours may

encourage us to assume that similar representations

are of use in explaining vision in animals. In this pa-

per, we argue that such assumptions may be mislead-

ing. Yet the assumption that vision is fundamentally

dependent on representations (and further assump-

tions involving the nature of those representations)

is widespread. We seek only to highlight problems

with these assumptions; problems which appear to

stem from incautious use of the notion of `represen-

tation'. We argue in particular that the notion of rep-

resentation as the construction of an internal



hypothesis, intelligent action involves the receipt of

symbols from symbol-generating sensory apparatus,

the subsequent manipulation of those symbols (e.g.

using techniques derived from mathematical logic, or

algorithmic search), in order to produce an output

symbol or symbol structure. Both the input and the

output have meaning conferred on them by external

observers, rather than the meaning being intrinsic to

the symbol (Harnad, 1990).

In the �eld of arti�cial intelligence, Newell and

Simon's hypothesis licensed a paradigm of research

concentrating on intelligence as the manipulation

of symbolic representations, and on perception as

the generation of those symbols and symbol struc-

tures. Specialised symbol-manipulating and logic-

based computer programming languages such as Lisp

(e.g., Winston & Horn, 1980) and Prolog (e.g.,

Clocksin & Mellish, 1984) (from \list processing" and

\programming in logic" respectively) were devel-

oped to ease the creation of `knowledge-based systems'

(e.g., Gonzalez & Dankel, 1993). In due course, under-

graduate textbooks appeared that essentially treated

the hypothesis as an axiomatic truth (e.g., Nilsson,

1982; Charniak & McDermott, 1985), paying little at-

tention to criticisms of the approach (e.g., Dreyfus,

1979, 1981).

In the �eld of machine vision, the Physical Sym-

bol System Hypothesis underwrites all research on

knowledge-based vision, where it is assumed that the

aim of vision is to deliver symbolic representations (or

`models') of the objects in a visual scene: in the words

of Pentland (1986), to go \from pixels to predicates".

This mapping



about the 2-d image such as the intensity changes and

their geometrical distribution and organisation. Fol-

lowing this, the primal sketch is processed to form the
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-d sketch", which represents orientation and rough

depth of visible surfaces, and any contours of disconti-

nuities in these quantities, still in a viewer-centred co-

ordinate frame. Next, the 2

1

2

-d sketch is processed to

form an internal \3-d Model", which represents shapes

and their spatial organisation in an object-centred co-

ordinate frame; including information about volume.

Hence, the 3-d model is an internal reconstruction of

the external physical world.

Within Marr's framework, formation of the 3-d

model is the end of the visual process, and the model is

then passed to `higher' processes, such as updating or



vidual genome encodes for a useful design. The �nal

evolved design can then be implemented and analysed

to determine how it functions.

In evolving sensorimotor controllers, a variety of

possible `building blocks' can be employed: for a com-

prehensive review and critique, see Matari�c and Cli�

(1995). In many of the systems discussed in the

next section, continuous-time recurrent neural net-

works (ctrnns) are employed: these are arti�cial neu-

ral networks composed of `neuron' units with speci�ed

time-constants giving each neuron an intrinsic dynam-

ics. The primary reason for employing such neural

networks



ary approach with minimalpre-commitments concern-

ing internal architecture or representations makes the

question \what types of representation do these ma-

chines use?" an empirical one. That is, we must

examine or analyse the evolved designs, generate hy-

potheses about the representations employed, and test

those hypotheses in an appropriate manner. Possi-

bly the evolutionary process will have resulted in a

knowledge-based or model-based solution, in which

case appropriate representations will be found; or pos-

sibly not.

And it is on this issue that the true signi�cance

of these simple visual machines is revealed: as far as

we are aware, no analysis of the evolved systems de-

scribed above has identi�ed the use of representations

or knowledge in the conventional (physical symbol sys-

tem) sense. That is, none of these systems operate by

forming a representation of the external environment,

and then reasoning with or acting upon that represen-

tation (e.g. by comparison with or reference to in-built

or acquired representations). This is in spite of the

fact that a machine-vision engineer, conversant in the

methods of knowledge-based vision, could (trivially)

develop an appropriate computational theory for any

of these tasks, identify appropriate representations

and transformation algorithms to act on them, and

specify an implementation in some physical hardware.

Evolution, working with primitive building blocks to





tinguished from a correlation is by noting that Har-

vey's argument implies that representations are es-

sentially linguistic (i.e., form an interlingua between

representation-using agents or entities). A represen-

tation should hence be normative: it should at least

o�er the opportunity to misrepresent; to more or less

correctly capture some external state of a�airs. In the

simple visual machines discussed above, there is no

representation because there is no possibility of mis-

representation. We, the external observers, can point

to the activity patterns and refer to them as repre-

sentations in explaining the system, and be right or

wrong to varying degrees about what those patterns

represent. But to talk of the agent using the repre-

sentations is to confuse patterns of activity which rep-

resent something else, and patterns of activity which

actually constitute the agent's perceptual or experi-

ential world, a point forcefully made by Brooks and

Stein:

\There is an argument that certain com-

ponents of stimulus-response systems are

`symbolic'. For example, if a particular neu-

ron �res { or a particular wire carries a posi-

tive voltage { whenever something red is vis-

ible, that neuron { or wire { may be said

to `represent' the presence of something red.

While this argument may be perfectly rea-

sonable as an observer's explanation of the

system, it should not be mistaken for an ex-

planation of what the agent in question be-

lieves. In particular, the positive voltage on

the





knowledge and representations into the gannet visual

system. Presumably the `knowledge' concerns the

utility of � as an indicator of time-to-contact, and the

ease with which it can be derived from an appropri-

ately sampled optic ow-�eld. But, in the absence of

clear de�nitions of



be addressed by further research, but statistical ar-

guments have been presented as powerful alternatives

to representational accounts of lower-order visual pro-

cesses (e.g., Srinivasan, Laughlin, & Dubs, 1982).

The examples we have given here, from studies

of insects, amphibia, birds, and humans, are by no

means conclusive proof of our arguments. However,

we believe that they are signi�cant and persuasive be-

cause, although all of the visually mediated tasks in-

volved could be performed using
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