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Abstract

Neural networks are commonly used to model conditional probability dis-

tributions. The idea is to represent distributional parameters as functions

of conditioning events, where the function is determined by the architecture

and weights of the network. An issue to be resolved is the link between dis-

tributional parameters and network outputs. The latter are unconstrained

real numbers whereas distributional parameters may be required to lie in

proper subsets, or be mutually constrained, e.g. by the positive de�niteness

requirement for a covariance matrix. The paper explores the matrix-logarithm

parametrization of covariance matrices for multivariate normal distributions.

From a Bayesian point of view the choice of parametrization is linked to the

choice of prior. This is treated by investigating the invariance of predictive

distributions, for the chosen parametrization, with respect to an important

class of priors.

1 Introduction

Neural networks are now commonly used to model conditional probability distribu-

tions (Ghahramani & Jordan, 1994; Nix & Weigend, 1995; Bishop & Legleye, 1995;

Williams, 1996; Baldi & Chauvin, 1996; Williams, 1998). The idea is for the neural

network to output distributional parameters of the conditional distribution. These

parameters are taken to be functions of conditioning events, where the function is

determined by weights in the network, as well as by the underlying architecture.

An issue to be resolved is the link between the distributional parameters and

network outputs. The latter are primarily unconstrained real numbers, whereas
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distributional parameters may have to lie in a restricted subset. More problem-

atically, there may be mutual constraints between distributional parameters. The
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Conversely if A is any real symmetric matrix, then � = expA is symmetric positive

de�nite and the correspondence betweenA and� is bijective. We therefore stipulate

that the network is provided with an additional set of dispersion output units whose

activations correspond directly to the diagonal and above-diagonal elements �

ij

(i � j) of A = log�. In this way n network outputs are needed for the mean and

another

1

2

n(n+ 1) for the log covariance matrix.

3 Likelihood

Suppose N pairs of corresponding observations f(x

k

;y

k

) : k = 1; : : : ; Ng have been

made on X and Y. The negative conditional log likelihood of the data is assumed

to factorize as

P
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where, from (1), the negative log likelihood of an individual
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Recall that �

k

and �

k

are the conditional mean and covariance matrix, as deter-

mined by network outputs when x

k

is given as input. Assuming this factoriza-

tion of the likelihood function, we can concentrate on the log likelihood of a single

observation.
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Both the log likelihood of the full data, and any of its derivatives, can

then be obtained by summation.

Omitting the subscript k in equation (2) and replacing � by expA, the negative

log likelihood of an individual observation can be written as

E =

1

2

traceA +

1

2

(y� �)

T

exp(�A) (y� �) + constant (3)



where U is orthogonal and � = diag(�

1

; : : : ; �
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) is the matrix of eigenvalues. It

follows that

�
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Partial derivatives with respect to �

ij

(i � j) are then given by
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Expressions (6) and (7) can now be used with backpropagation to calculaterE with

respect to network weights.

3.2 Complexity

The expression of highest complexity in the formulae for E and its derivatives is (7).

This is O(n

4

) since it requires a double summation for each of the O(n

2

) parame-

ters �

ij

. Corresponding complexity for the log-Cholesky parametrization (Williams,

1996) is O(n

2

). It should be noted, however, that calculation of network output ac-

tivations alone, for this type of network, is typically already O(n

4

). This is because

there are O(n

2

) output units and each output unit requires O(n

2

) multiplications

and additions if we assume that the number of hidden units is of the same order

as the number of outputs units. Thus the inherent O(n

4

) complexity of this type

of network already arises from the decision to model the full conditional covariance
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Speci�cally we are considering w to be the adjustable weights and biases of a neural

network. The aim is to determine the density of the predictive distribution

p(yjx;D) =

Z

p(yj�(x;w)) p(wjD) dw (8)

where D are the observed data and

p(wjD) / p(Djw) p(w) (9)

is the posterior density for w. Since both the conditional density p(yj�(x;w)) and

the likelihood p(Djw) are given by the model, the remaining problems are, �rst,

the conceptual problem of determining the prior



4.3 Weight priors

To proceed further, we have to be more speci�c about the prior. We shall restrict

attention to prior densities essentially of the form

p(w) /

�

kwk

p

�

�


(14)

for p = 1; 2 where

kwk

p

=

�

X

i

jw

i

j

p

�

1=p

and 
 is a positive constant. The choice of (14) is discussed in Appendix B. The

case p = 1 will be referred to as the Laplacian prior, and the case p = 2 as the



The biases on location output units form a vector which we refer to as m

0

.

Similarly the weights on connections from a given hidden unit h, to the various

location output units, form a vector which we shall refer to as m

h

(h > 0). Writing

z

1

; : : : ; z

H

for the activations of hidden units, the conditional mean is given by the

activations of location
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5 Invariance under linear transformations

Restricting attention to linear transforms of the type Y

0

= BY + c, we can now

discuss invariance in the sense of (13). We have to consider whether p(y

0

jx;D

0

)

is proportional to p(yjx;D) when both are de�ned by (8) and (9). A rigorous

treatment follows from the rules for change of variables in multiple integrals. Our

treatment will be more sketchy, leaving the interested reader to �ll in the details.

The approach is to determine the changes of variables necessary to preserve the

likelihood function, and then to consider the consequences for the prior. Before

beginning we recall the following.

1. If the random vector Y has mean � and covariance matrix �, the random

vectorY

0

= BY+c has mean�

0

= B�+c and covariance matrix�

0

= B�B

T

.

2. If A is a square matrix, f is an analytic matrix function and B is an invertible

matrix of the same size as A, then f(BAB

�1

) = Bf(A)B

�1

. In particular, if

B is orthogonal, then log(B�B

T

) = B(log�)B

T

.

5.1 Common change of scale

Consider �rst the case B = bI, where b is a non-zero scalar and I is the identity

matrix. This means that Y transforms to

Y

0

= bY + c (21)

which amounts to a common rescaling of all components of Y followed by a dis-

placement. The transformed mean is �

0

= b� + c and the transformed covariance

matrix is �

0

= b

2

� so that log�

0

= log�+ �I, where � = log b

2

. The network will

now output the transformed conditional mean and log covariance matrix, identically

in z

1

; : : : ; z

H

, if and only if weights and biases in the output layer are transformed

by

m

0

0

= bm

0

+ c (22)

m

0

h

= bm

h

(h = 1; : : : ;H) (23)

and

A

0

0

= A

0

+ �I (24)

A

0

h

= A

h

(h = 1; : : : ;H): (25)

It is then easy to verify that

p(y

0

j�(x;w

0

)) / p(yj�(x;w)) (26)

p(D

0

jw

0

) / p(Djw) (27)

for the transformation from w to w

0

corresponding to (22){(25). It only remains to

consider the e�ect on p(w). Since biases are excluded fromW

1

andW

2

, transforma-

tions of m

0

and A

0

leave p(w) unchanged. RemainingA

h

are una�ected, hence the
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from the fact that the Jacobian of the transformation of weights corresponding to

(29){(32) is constant. Note that, in this case, it is essential that the biases for

diagonal elements of log� should be treated in the same way as for o�-diagonal

elements. Because of (31), they must all belong to the same regularization class, or

else all be unregularized. Since invariance under (21) requires that diagonal elements

should be unregularized, we conclude that none should be regularized when using

the Gaussian prior.

5.2.1 Permutations

An important special case of (28) occurs when B is a permutation matrix, P say. A

permutation matrix has exactly one entry in each row and column equal to 1, with

all other entries equal to 0. Multiplication of Y by P in (28) simply renumbers the

variables. SinceP is orthogonal, log(P�P

T

) = P(log�)P

T

, so that the components

of log� are permuted in the same way. It follows that all solutions will be invariant

under such permutations, provided only that the prior is. This is certainly the

case for (20), using either the Gaussian or Laplacian priors, since the norms are

invariant under permutations. Invariance does not normally hold for the Cholesky

parametrization. If � = AA

T

is the Cholesky factorization of a symmetric positive

de�nite matrix �, with A lower triangular, then P�P

T

= PA(PA)

T

. But this is

not



6 Conclusion

A basic requirement of consistency for a statistical model is that it should be inde-

pendent of the arbitrary labelling of variables. The matrix-logarithm parametriza-

tion discussed in Section 3 satis�es this condition for any prior which is similarly

invariant. Others, including the log-Cholesky parametrization, do not guarantee

this invariance even if, in practice, the
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by linearity of (33). To compute directional derivatives of integer powers A
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where

b

E

ij

is the symmetric elementary direction with 1 in the i; jth and j; ith posi-

tions and 0 elsewhere (hence a single 1 on the diagonal if i = j). The expressions in

(7) for the partial derivatives of the log likelihood function (3) can now be obtained

by straightforward manipulation.

B Weight prior

This appendix o�ers a justi�cation for the use of the weight priors (14) (compare

Buntine & Weigend, 1991; Williams, 1995).

B.1 Laplacian prior

Suppose that individual network weights are distributed with a Laplace or two-sided

exponential density p(wj�) = (�=2) expf�� jwjg where �

�1

is a positive scale pa-

rameter equal to the expected absolute value of w. Suppose there areW components

of the weight vector w. Assuming independence, the prior density for the full weight

vector w is then

p(wj�) =

 

�

2

!

W

exp f�� kwk

1

g (35)

where the unknown scale parameter � can be eliminated using

p(w) =

Z

1

0

p(wj�) p(�) d� (36)

if we assume a suitable prior p(�). A natural choice is the conjugate prior (Berger,

1985; Bernardo & Smith, 1994) which, for the Laplace likelihood, is the gamma

distribution

p(�) =

�

�

�(�)

�

��1

expf���g (37)

for �; � > 0. Substituting (35) and (37) into (36) we obtain another gamma integral,

hence

p(w) = K

�

kwk

1

+ �

�

�(W+�)

(38)

where

K =

�

�

2

W

�(W + �)

�(�)

:

As � and � approach zero, (37) approaches the improper 1=� ignorance prior for �.

Correspondingly, in the limit �; � ! 0, we have from (38)

p(w) /

�

kwk

1

�

�W

which is (14) with p = 1 and 
 = W .
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B.2 Gaussian prior

Now suppose that individual network weights are distributed with independent zero-

mean normal densities with common variance. The prior density for the full weight

vector w is then

p(wj�) =

 

�

2�

!

W=2

exp

(

�

�

2

kwk

2

2

)

(39)

where �

�1

is the unknown common variance. The conjugate prior is again the

gamma distribution (37), so that after substitution into (36) and integration, we

have

p(w) = K

�

kwk

2

2

+ 2�

�

�(W=2+ �)

(40)

where

K =

(2�)

�

�

W=2

�(W=2 + �)

�(�)

:

In the limit �; � ! 0, we have

p(w) /

�

kwk

2

�

�W

which is (14) with p = 2 and 
 = W .

Multiple classes. Note that the more general prior (15) can be derived similarly,

in both cases, if we suppose that there may be di�erent unknown characteristic

scales �

1

; : : : ; �

C

for di�erent groups of
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