
CSRP 499

Implementing a Java Virtual Machine for

Network Simulation

Rory Graves and Ian Wakeman

�y

October 1998

Abstract

In this paper we discuss the development of a controllable virtual ma-

chine for use within network simulations. We describe general problems

in integrating virtual machines with simulation environments, illustrated

through our experiences in building a Java Virtual Machine.

1 Introduction

A burgeoning area of network research is in Active Networks [11]. In active

networks, packets contain both date and code, which can be executed on inter-

mediate switches. In order to evaluate the e�ectiveness of this decision, simula-

tions of network algorithms and protocols need to be able to measure the e�ect

of processing load on switches as well as on the more traditional resources of

bu�ers and bandwidth. We have thus designed a simulation environment build-

ing upon the ns network simulator [8], in which we integrate virtual machines

on which to run the packetised code.

Most Active Network research uses the Java Virtual Machine as the compu-

tational substrate. We therefore decided upon a Java Virtual Machine (JVM)

as our initial target machine.

Many JVMs already exist (see section 2.1) but we have found none that are

suitable for simulation work. This is because JVMs are written for speed, not

clarity or controllability. To use a JVM in simulation requires the ability to

\step" the JVM and keep it synchronized with \simulation time", and to allow

arbitrary instrumentation of code within the JVM. We also need to experi-

ment with various choices within the design of the JVM, such as the scheduler,

the class loader and the garbage collection system, requiring the JVM to be

amenable to accepting new implementations of these services.

�

This work is sponsored by EPSRC grant GR/L06072, BT Laboratories and Hewlett-

Packard.

y

School of Cognitive and Computing Sciences, University of Sussex, Falmer, Brighton, BN1

9QH, UK

1



In the rest of this paper, we �rst describe our requirements in detail, and

describe how other implementations of JVMs are inadequate. We then outline

the major problems in building our JVM, and how we have overcome them,

concluding with a discussion of how the JVM is used within our simulation

environment.

2 Virtual Machine Requirements

A machine that is steppable The VM should be controllable down to the

level of individual instruction execution. We must de�ne an indivisible unit of

time (a step).



useful information so were ignored. The only exception to this was a vaguely



Operating System

Execution Engine

Support Code:

Exceptions
Garbage
Collected
Heap Threads

Security
etc.

Native
Method
Area

and
Class

Method
Area

Dynamic
Class
Loader
and
Verifier

Native
Method
Linker

Application
Applet/
Network

Classes

Native
Methods

(.dll or .so)

Classes

Standard

Java
Built-in

The Java Runtime System

Figure 1:



6



Java provides a very simple mechanism for programmers to synchronize

threads. Each object in Java has an associated lock. A thread may attempt

to gain the lock on an object. If the lock is already held by another thread

the thread is forced to wait. Synchronization can occur in three places. Firstly

there are two JVM instruction MONITOR ENTER and MONITOR EXIT (generated

by synchronized blocks). Secondly synchronized methods implicitly call these

instructions when the method is entered and exited. Lastly synchronization

also occurs with class loading. If a thread begins loading an initialising a class

when another thread is already doing so it is forced to wait. The second thread

is restarted and given the requested class when the �rst thread has �nished

initialising it.

Within this JVM there is no way for a separate clock to interrupt a thread

running. Instead the JVM asks the scheduler to pass a certain amount of simu-

lation time. This translates into the number of steps that can occur in a given

period of simulation time (see 7.1). A thread will run for a given number of

steps (a certain time period) just as a normal system. The scheduler is currently

a fairly simple prioritised round-robin scheduler. Each thread is allowed to run

for a de�ned number of steps before control is handed to another thread. This

mimics reality fairly well.

The scheduler is also responsible for dealing with locks and synchronization

issues. The lock manager and scheduler interact but are designed in a modular

fashion. Each makes requests to the other as needed to add or remove threads

from the running queues.

Little is speci�ed about what the normal scheduling method is. It is declared

\implementation dependent" and ignored. This gives the implementor freedom

and exibility so that an appropriate algorithm for their needs can be used.

As stated the scheduler is currently a prioritised round robin scheduler but it

is interchangeable with any other required scheduling module. There would

be no problem changing the current implementation for a di�erent scheduling

algorithm.

7.1 Stepping

We required a large degree of exibility in step control and granularity. We

�rst considered using a �nite state machine over the instructions but the ensu-

ing complexity made this infeasible. The alternative design used interlocking

threads. To run an instruction on the JVM the control thread wakes the VM

thread and goes to sleep on a common lock. The VM thread executes a single

step de�ned by us, wakes the control thread and then goes to sleep on the com-

1 0 Tdorithm 0 Td
(sren)1000.37(erlo)-1
(As)Tj.dR(us0.6(the)]TJ6002999.7(time.)]TJ
55.2 0rsA5(le)]TJ
-dmd
(sren)1000.37T(y)-13000ation)-14999.7[tt2.m8c75b
(an)Tj
15.11908c7e25.ueableclass



VM Thread

Blocked

VM Step

VM Step

Control

Thread

Time

Figure 2: Thread interlocking for stepping

8 The Heap

True simulation of the heap has been ignored in this implementation for several

reasons. Java is strongly typed which means that it is hard to use a block

of memory to represent a at memory area. The only obvious way visible to

achieve this is to use a byte or int array as a heap and do data conversions

to transfer to and from the represented types as needed.



Reference Counting For reference counting each object has a counter asso-

ciated with it. This counter represents the number of di�erent references

to the object. Whenever a reference within the running program is mod-

i�ed the counters for the a�ected objects are modi�ed. For example, if

a reference is duplicated on the stack the reference counter would be in-

cremented. When a reference is written over or destroyed the counter is

decremented. When the counter reaches zero the object can no longer be

referenced from the running program and can thus be garbage collected.

The only place that this algorithm falls over is when we have a cyclic

data structure. If we create two objects A and B which refer to each

other. When the running program can no longer reference each other the

reference count is not zero. This is because A still holds a reference to B

and vice-versa. Reference counting must be supplemented with another

algorithm to guarantee that all the garbage is collected.

Mark and Sweep The concept behind mark and sweep garbage collection is

simple. Take all of the reference on the stack and the local variable area.

We will call these the root set. From each root object we take all of the

references it contains and visit these recursively. As we travel through

each object we mark it as 'visited'. Any object that is not marked as

'visited' when we �nish is not reachable from the running program and

can thus be garbage collected.

9.1 Problems

The two main versions of simple garbage collection detailed above have some

problems. Reference counting, as described, cannot deal with circular references

and must be supplemented with some other garbage collection method. Simple

mark and sweep is �ne as long as nothing changes during the collection. This

means that the programmust stop for garbage collection to take place. In many

cases this is unacceptable.

9.2 Incremental Garbage collection

Incremental garbage collection allows collection during program execution. i.e

rather than collecting when there is no more memory, collection can be done 'on

the y'. The most common technique for this is tri-colour marking as described

below.

9.2.1 Tri-Colour Marking

Tri-colour marking works in a very similar way to a normal search. Every object

on the heap has one of three colours:

White Objects that have not yet been visited.

Grey Objects that have been visited, but whose children have not all been

visited.

8



Black Objects that have been visited along with all their children.

All objects start white, as they are visited they are changed from white to

grey. When all of an objects have been visited they are coloured black. When

there are no grey objects left all of the white objects left are unreachable and

therefore may be garbage collected.

For this to work we must maintain two invariants:

1. No black object points to a white object

2. All grey objects are in a list of objects yet to be explored

The running program may still be creating and modifying objects. To keep

the invariants valid we may recolor di�erent objects so that the invariants hold.

Di�erent versions of the algorithmuse di�erent colouring mechanisms to do this.

9.3 Does no memory mean no memory?

When a garbage collecting memory management system reports that it is out

of memory, it may not be accurate. If resource became free during the current

pass the GC algorithm may not realise until the completion of its next GC

cycle. This raises some interesting issues about when, and how much time

should be spent garbage collecting. It may be better to allocate a percentage

of





13 Integration within the network Simulator

14 Conclusions

Determinism One of the nicest features of this JVM is that it is completely

deterministic. This holds event when debugging information is added to the

output. This is not true of most JVMs as they rely on thread scheduling, timers

and other features of the operating system and platform on which they run.

This tends to add a small amount of non-determinism to scheduling etc. and

the addition of debugging output etc. would cause similar timing problems.

This is excellent for simulation and debugging because two runs of the same

program with the same input will always produce exactly the same result.

Testing and Proving Proving that the JVM meets the given speci�cation

exactly is very hard. It has been shown that many of the commercial releases

are not perfect. Sun do not supply a test-suite for this which is annoying.

We have used the regression test-suite that is supplied with KAFFE [7] for

much of our testing. This provides a good set of tests to prove that the JVM

is at least passable. There are many other examples written which we have

produced scripts to test.



Where Next? The implemention is a good clean implemention of a basic

JVM. We would recommend taking another implementation and converting it

to your needs, if possible, rather than starting from scratch. To truly �nish this

JVM there is much work that needs to be done but it has been taken to a point

where it meets our needs for experimentation. This project will be publically

released shortly and work will probably continue with the help of others to make

it a really complete project.



[12] Unknown. An implementation of the java virtual machine. Master's thesis,

USA, Unknown. Implementation in C without GC.

[13] Bill Verner. Inside the Java Virtual Machine. McGraw-Hill, 1998. Excellent

introductory book and the example applets are great.

[14] Paul R. Wilson. Uniprocessor garbage collection techniques. In 1992 Inter-

national Workshop on Memory Management, St. Malo, France, September

1992. Springer-Verlag Lecture Notes in Computer Science.

13


