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Abstract

Foveal or spatially-variant image representations are important

components of active vision systems. Log-polar sampling is a

particularly powerful example as a result of the simplicity with

which expansion and rotation can be handled. These properties

are exploited here for the detection of general straight lines, line
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form sampling, and partly because without effective active cameras non-uni-

form sampling sacrifices too much potential information. Now that active

vision systems are becoming more common, non-uniform sampling is likely

to increase in importance.

Despite its difficulties, non-uniform sampling, and in particular log-polar

sampling, has received a certain amount of attention. Funt [3] demonstrated

some of the fundamental advantages of an active foveated system for repre-

senting solid motion in 2-D, whilst Weiman and Chaikin [11] laid some math-

ematical groundwork. Wilson [12] emphasised the approximate log-polar

mapping of the optic array onto the visual cortex in primates. A number of re-

searchers, notably Tistarelli and Sandini [7, 8] have used the scheme in the

context of motion detection; Tunley and Young [9] investigated the advantag-

es of log-polar representations in estimating first-order optic flow. Also using

log-polar sampling, Lim, West and Venkatesh [4] have developed mecha-

nisms for precise foveation of features, Peters and Bishay [5] have described

foveation on vanishing points, and Bederson, Wallace and Schwartz [1] have

described an active vision system incorporating log-polar sampling.

The present paper builds on the theoretical work of Weiman and Chaikin

[11] to explore the representation and detection of straight lines and circles in

log-polar sampled images. An efficient new algorithm for finding these struc-

tures is described and its performance on real images investigated. The algo-

rithm is intended to be applied in the context of a system like that of

Brunnström, Eklundh and Uhlin [2], where a representation of a scene is built

up using directed foveations.

2 The log-polar sampled image

In log-polar sampling, pixels are indexed by ring number R and wedge

number W, related to ordinary x, y image coordinates by the mapping

(1)

where (r, θ) are polar coordinates, (xc, yc) is the position of the centre of the

log-polar sampling pattern, nr and nw are the numbers of rings and wedges re-

spectively, and rmin and rmax are the radii of the smallest and largest rings of

samples. We also define .

A log-polar sampled image is one whose samples are centred on points

mapping to integral R and W, , . The
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pling centre, as shown in Fig. 1a. This arrangement appears to be approximat-

ed by the ganglion cells of the primate retina and the visual cortex [6]. In this

representation, image expansions and rotations about (xc, yc) become shifts in

R and W, but image translation has a more complex effect.

In order to keep a pixel’s nearest neighbours in orthogonal directions at

approximately equal distances from it, the following constraint is needed

(2)

Log-polar sampled images are often displayed on orthogonal (R, W) axes,

as in Fig. 1b, but this is misleading since it leads them to be regarded as “dis-

torted” representations. In fact, the distortion only arises when they are dis-

played on the page or screen: as a mapping from coordinate values to position

on a plane, the log-polar representation is no more distorted than the conven-

tional one. When displayed with the correct mapping to position, as in Fig. 1c,

the significant observable feature is the loss of resolution towards the periph-

ery, as the samples become further apart.

These images should ideally be generated using special-purpose cameras,

such as those described in [8]. However, a reasonable approximation for re-

search is obtained by resampling a conventionally digitised image, and this

method is used in the present work.

3 The straight line in the log-polar image

3.1 The log-polar straight line and its Fourier transform

Any straight line, not passing through (xc, yc), can be mapped into any other

straight line by a rotation (to make the lines parallel) followed by a uniform

expansion with (xc, yc) fixed. This property can be exploited to allow easy de-
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(d)

(e) (f)

(c)

Figure 1: (a)



5

polar space. Although in practice it might be adequate to synthesise the

straight line in a log-polar array and apply the discrete Fourier transform,

computing its transform directly avoids noise caused by starting from a dis-

crete representation of the line. The formula for the transform also opens up

the possibility of further analysis of the properties of the process in the fre-

quency domain, though this is not exploited here.

To find the transform, we take a path integral along the line in log-polar

space; if S is the standard line with element ds in (ρ, θ) space,

the integral is

(3)

where w(ρ,θ) is a weighting factor to allow convergence. This must be smooth

and tend to zero for large ρ. A suitable choice is

, (4)

where a larger α makes the template more localised round the minimum of ρ.

In all the examples in this paper, . Since the integral

becomes

(5)

Rearranging and using standard tables, this evaluates to

(6)

where Γ is the complex gamma function. The line is at an arbitrary po-

sition in the log-polar grid; to make a useful mask we choose as the template

. The discrete Fourier transform of this is obtained by evaluating

F(kρ,kθ) at unit intervals of kR and kW from 0 to and respective-

ly, with  and .

3.2 Implementation of straight line detection

Transformed straight line templates were generated using Eq. 6. Because of

symmetry, the sum of the real and imaginary parts is sufficient; an example

of a computed template in the frequency domain is shown in Fig. 1e. Tem-

plates were multiplied by the frequency domain representations of a variety
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of other operators, allowing Gaussian smoothing, differentiation with respect

to R or W, and difference of Gaussians convolution to be combined with line

detection in a single step. This allows matching to various kinds of bounda-

ries. Examples of the masks generated are shown in Figs 1f and 1g.

Any linear operation can be thus combined with line detection, but the im-

ages used in this study were first subjected to a non-linear process to reduce

sensitivity to the grey-level range. This involved subtracting a local average

of the grey level, obtained by Gaussian smoothing, from each pixel in the

original conventional images, and then applying the logistic function

 to each pixel of the result.

This compression was carried out on the conventional image input prior to
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peak, if the convolution had been carried out in the spatial domain. The size

of these values indicates how much each pixel of the image contributed to the

peak.

We then simply project this array onto the W axis, by summing over all R

from 0 to for each W. Starting from the maximum in the resulting one-

dimensional array, we search outwards in each direction, wrapping round if

necessary, to find a value less than some constant times the peak value. This

gives the limits in θ of the line segment which contributed most to the detected

line. For a line with parameters ρ
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4 The circle in the log-polar image

4.1 The log-polar circle and its Fourier transform

It is reasonable to ask whether the simplicity of straight line detection in log-
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5 ‘Eye movements’: a resampling strategy

To get some sense of the potential value of log-polar line detection, it is im-

portant to simulate the way it might be exploited in an active vision system.

To this end, a simple recentring strategy was used to move the log-polar pat-

tern around in conventional images, in rough simulation of saccadic eye

movements in the optic array. The strategy adopted is designed to demon-

strate the possibilities of the approach rather than to be optimum in any re-

spect.

By analogy with eye movements, a foveation is taken to mean extraction

of information for a single sampling centre (xc, yc), and a saccade to mean a

movement of the sampling centre. Various kinds of saccade were pro-

grammed, including:

(i) a small random step from a Gaussian distribution round the current

centre;

(ii) a random movement to anywhere in the original image with a proba-

bility depending on the density of previous sampling;
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here, straight line detection is demonstrably effective, but circle detection is

hampered by the inaccuracy of the representation. A significant advantage of

the approach is that no edge or feature detection precedes the line detection;

the main computational cost is an FFT of complexity for

each foveation, and this could be carried out in suitable hardware.

Processes on log-polar images are not easy to compare with processes on

conventional images, since they are designed to be embedded in a system with

foveal sampling and an active camera at the hardware level. In particular, the

results of log-polar line and circle detection are not comparable with those of,

(a)

(c)

(b)

Figure 4: Examples of straight lines accumulated using an eye movement strategy. In all

cases rmax = 50, nr = 64, nw = 128, rmin ≈ 2.3, and the mask is differentiated with respect to

R and smoothed with σ=1. Up to 5 lines from each foveation are drawn, provided their peaks

exceed 3 times the s.d. of the convolution output. (a) Input image is Fig 2a. Combined line

segments from 100 foveations, saccades of type (i) and (iv) with P(type i) = 0.25. (b) As (a)

but all saccades of type (ii). (c) Input image for (d), segments from 500 foveations with all 4

types of saccades equally probable. (e), (f) Asble.
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say, edge detectors or the Hough transform operating on conventional images.

Weiman [10] has described Hough transform detection of straight lines in log-

polar space, but results on real images are not reported.

A full evaluation of the system described here requires further work. Tests

on synthetic images show that the method can readily locate the boundaries

of polygons where the standard deviation of the noise exceeds the grey-level

difference between the interior and exterior, but this is not surprising given

the incorporation of smoothing and the integration of evidence from a sub-

stantial area of the image. More to the point, Figs 4d and 4f give some indica-

tion of the extent to which a combination of log-polar line detection and

camera movements might work together to build up a structural representa-

tion. An appropriate benchmark would involve a higher-level task which de-

manded that image structure be extracted.

These processes could play a valuable role if integrated into an active vi-

sion system, with spatially variant sampling at the hardware level. However,

the most significant challenges are not at the level of feature detection, but lie

in developing a strategy for foveation and saccade so as to integrate informa-

tion effectively. This will require a more task-directed, purposive approach.
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